Microbial Bioactives

Microbial Bioactives | Online ISSN 2209-2161
279
Citations
152.4k
Views
143
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

Microalgae and Cyanobacteria as Photosynthetic Microbial Factories: Taxonomy, Biochemical Potential, and Emerging Bioindustrial Applications

Abstract 1. Introduction 2. Materials and methods 3. Results 4. Discussion 5. Limitations 6. Conclusion References

Mireille Fouillaud 1, Hamid Mukhtar 2, Ikram ul Haq 2, Carla Arenas Colarte 3, Iván Balic 4, Adrián A. Moreno 5, Maximiliano J. Amenabar 6, Óscar Díaz 4, Tamara Bruna Larenas 3, Nelson Caro Fuentes 3, Maslin Osathanunkul 7

+ Author Affiliations

Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110630

Submitted: 11 January 2026 Revised: 08 March 2026  Accepted: 15 March 2026  Published: 17 March 2026 


Abstract

Microalgae and cyanobacteria are increasingly recognized as versatile photosynthetic microorganisms with substantial potential to support sustainable bioindustrial systems. Their taxonomic diversity, rapid growth rates, and capacity to synthesize proteins, lipids, pigments, and other high-value metabolites have positioned them as promising alternatives to conventional biological resources. Despite extensive experimental research, the evidence remains fragmented across species, cultivation strategies, and application domains, limiting cross-study comparability and informed decision-making. This study presents a systematic review and meta-analysis aimed at synthesizing current knowledge on the taxonomy, biochemical potential, and applied performance of microalgae and cyanobacteria as photosynthetic microbial factories.A comprehensive literature search was conducted across major scientific databases, and eligible studies were screened, selected, and analyzed following PRISMA guidelines. Quantitative data on biomass composition, metabolite production, and application-specific performance metrics were extracted and standardized. Random-effects meta-analytical models were applied to account for biological and methodological heterogeneity across studies. Forest plots were used to estimate pooled effects, while funnel plots were employed to explore reporting consistency and potential small-study effects.The synthesis reveals substantial variability in biochemical yields and application outcomes that can be attributed to taxonomic identity, cultivation conditions, and system design. Protein-rich taxa such as Arthrospira and Chlorella dominate nutraceutical applications, while lipid-specialized groups underpin emerging energy and biorefinery concepts. Environmental applications, including wastewater treatment and bioelectrochemical systems, demonstrate integrative potential but remain constrained by scale-up challenges. Overall, this review provides a structured, evidence-based framework linking organismal diversity to functional performance, supporting more rational development of microalgae- and cyanobacteria-based biotechnologies.

Keywords: microalgae; cyanobacteria; systematic review; meta-analysis; bioindustrial applications; biochemical composition; photosynthetic microorganisms

References

Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2022). Mixotrophic cultivation of microalgae: Principles, advantages, and applications. Renewable and Sustainable Energy Reviews, 159, 112247. https://doi.org/10.1016/j.rser.2022.112247

Abreu, A. P., Martins, R., & Nunes, J. (2023). Emerging bioengineering applications of microalgae-based systems. Bioengineering, 10(8), 955. https://doi.org/10.3390/bioengineering10080955

Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., & Iluz, D. (2021). Unconventional cultivation of microalgae for sustainable bio-production. Bioresource Technology, 329, 124895. https://doi.org/10.1016/j.biortech.2021.124895

Alvarez, A. L., Fernández, A., Pérez, L., & Martínez, S. (2021). Wastewater-based cultivation of microalgae: A circular bioeconomy approach. Algal Research, 54, 102200. https://doi.org/10.1016/j.algal.2021.102200

Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., Roger, A. J., & Philippe, H. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27(8), 1698–1709. https://doi.org/10.1093/molbev/msq059

Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis. Journal of Eukaryotic Microbiology, 46(4), 347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x

Champenois, J., Marfaing, H., & Pierre, R. (2015). Review of the taxonomic revision of Chlorella. Journal of Applied Phycology, 27(5), 1845–1851. https://doi.org/10.1007/s10811-014-0431-2

Chapman, V. J., & Chapman, D. J. (1973). The algae. Macmillan. https://doi.org/10.1007/978-1-349-01509-2

De Morais, M. G., Costa, J. A. V., & Souza, C. R. F. (2015). Biological activities of cyanobacteria metabolites: A review. BioMed Research International, 2015, 835761. https://doi.org/10.1155/2015/835761

De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J. M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., … Karsenti, E. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1261605. https://doi.org/10.1126/science.1261605

Dvorák, P., Hašler, P., & Bennike, O. (2017). Phylogeny of cyanobacteria. In B. A. Whitton (Ed.), Modern topics in the phototrophic prokaryotes (pp. 3–46). Springer. https://doi.org/10.1007/978-3-319-46261-5_1

Garcia-Pichel, F. (2009). Cyanobacteria. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 107–124). Elsevier. https://doi.org/10.1016/B978-012373944-5.00250-9

Gonçalves, A. L., Pires, J. C. M., Simões, M., & Oliveira, R. (2016). Integration of microalgae cultivation with wastewater treatment. Algal Research, 14, 127–136. https://doi.org/10.1016/j.algal.2016.01.008

Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x

Hachicha, R., Zouari, N., Ben Rejeb, N., & Sayadi, S. (2022). Microalgae-based bioelectrochemical systems: Advances and challenges. Applied Sciences, 12(4), 1924. https://doi.org/10.3390/app12041924

Jacob-Lopes, E., de Carvalho, J. C., & de Morais, M. A. (2020). Handbook of microalgae-based processes and products. Academic Press. https://doi.org/10.1016/C2018-0-03871-3

Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W. (2011). Phytoplankton pigments in oceanography. Cambridge University Press. https://doi.org/10.1017/CBO9780511732263

Lauersen, K. J. (2019). Recombinant protein expression in microalgae. Planta, 249(1), 155–180. https://doi.org/10.1007/s00425-018-3051-x

Lee, R. E. (1989). Phycology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511812897

Levasseur, W., Sanchez, C., & Arashiro, F. (2020). Biodiversity of microalgae and lipid composition. Biotechnology Advances, 41, 107545. https://doi.org/10.1016/j.biotechadv.2020.107545

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(4), 477–489. https://doi.org/10.1007/BF01574779

Mostafa, S. S. M. (2012). Microalgal biotechnology. InTechOpen. https://doi.org/10.5772/50456

Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). The ecology of macroalgae. Phycologia, 35(4), 308–326. https://doi.org/10.2216/i0031-8884-35-4-308.1

Palinska, K. A., & Surosz, W. (2014). Taxonomy of cyanobacteria. Hydrobiologia, 740(1), 1–11. https://doi.org/10.1007/s10750-014-1971-9

Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x

Raven, J. A., & Allen, J. F. (2003). Genomics and chloroplast evolution. Genome Biology, 4(3), 209. https://doi.org/10.1186/gb-2003-4-3-209

Richmond, A. (2004). Handbook of microalgal culture. Blackwell. https://doi.org/10.1002/9780470995280

Rockwell, N. C., Su, Y. S., & Lagarias, J. C. (2014). Cyanobacteria and photosensory systems. Frontiers in Ecology and Evolution, 2, 66. https://doi.org/10.3389/fevo.2014.00066

Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., & Allen, A. P. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), e0119248. https://doi.org/10.1371/journal.pone.0119248

Sili, C., Komárek, J., & Blaha, J. (2012). Arthrospira (Spirulina): Taxonomy and ecology. In B. A. Whitton (Ed.), Ecology of cyanobacteria II (pp. 677–705). Springer. https://doi.org/10.1007/978-94-007-3855-3_25

Suparmaniam, U., Yusoff, F. M., & Idris, A. (2019). Circular bioeconomy potential of microalgae. Renewable and Sustainable Energy Reviews, 115, 109361. https://doi.org/10.1016/j.rser.2019.109361

Suresh, K. S., Anantharaman, P., & Rajesh, S. (2019). Algal biofuels: Challenges and opportunities. In V. K. Gupta (Ed.), Advances in eco-fuels (pp. 89–117). Elsevier. https://doi.org/10.1016/B978-0-08-102728-8.00004-1

Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and bioactivity. Current Science, 89(1), 47–57. https://www.jstor.org/stable/24110410

Yan, N., Chen, X., Li, Y., & Wang, H. (2016). Microalgae as platforms for recombinant protein production. International Journal of Molecular Sciences, 17(6), 962. https://doi.org/10.3390/ijms17060962


Article metrics
View details
0
Downloads
0
Citations
10
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
10
View
0
Share