Microbial Bioactives
Microbial Bioactives | Online ISSN 2209-2161
279
Citations
152.3k
Views
143
Articles
REVIEWS (Open Access)
Illuminating Biological Dark Matter: Integrating Metagenomics, Synthetic Biology, and AI to Unlock Microbial and Genomic Potential for Therapeutics and Biotechnology
Yue Li 1, Shunqi Liu 2 *
Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110627
Submitted: 13 February 2026 Revised: 01 April 2026 Accepted: 08 April 2026 Published: 10 April 2026
Abstract
The exploration of microbial and human genomic "dark matter" has transformed biotechnology, shifting the focus from merely reading genetic codes to actively engineering and harnessing them for sustainable solutions and human health. Over 99% of microorganisms remain uncultured, representing vast reservoirs of novel natural products (NPs) and enzymes that can be accessed through culture-independent metagenomics. Function-based, sequencing-based, and single-cell metagenomic approaches enable the discovery of bioactive compounds such as turbomycins, fasamycins, and cadasides, which hold promise against multidrug-resistant pathogens. Parallel advances in synthetic biology have established robust chassis organisms, including Saccharomyces cerevisiae and fast-growing cyanobacteria, optimized for industrial production of biofuels, chemicals, and bioplastics. Artificial intelligence (AI) and machine learning further refine these platforms, providing predictive models for bioprocess optimization, biomass accumulation, and metabolic engineering. In clinical contexts, proteogenomics integrates DNA, RNA, and protein-level data to identify therapeutic targets and overcome drug resistance in diseases such as colorectal cancer. The ongoing evolution of HIV-1 illustrates the challenge of viral diversity, highlighting the role of next-generation sequencing, CRISPR-based gene editing, and biosensor-enabled surveillance in precision medicine. Gut microbiota manipulation, through fecal microbiota transplantation and engineered probiotics, represents a frontier for addressing systemic and metabolic disorders. This systematic review synthesizes quantitative data from these diverse fields, emphasizing the synergy between metagenomics, synthetic biology, and AI, and provides a meta-analytic framework to evaluate their translational potential for therapeutics, industrial biotechnology, and personalized medicine.
Keywords: Metagenomics; Synthetic Biology; Artificial Intelligence; Microbial Dark Matter; Proteogenomics; HIV-1; Gut Microbiota; Natural Products
References
Alam, K., Abbasi, M. N., Hao, J., Zhang, Y., & Li, A. (2021). Strategies for natural products discovery from uncultured microorganisms. Molecules, 26(10), 2977. https://doi.org/10.3390/molecules26102977
Alexiev, I., & Dimitrova, R. (2025). The origins and genetic diversity of HIV-1: Evolutionary insights and global health perspectives. International Journal of Molecular Sciences, 26(22), 10909. https://doi.org/10.3390/ijms262210909
Blank-Landeshammer, B., Richard, V. R., Mitsa, G., Marques, M., LeBlanc, A., Kollipara, L., … Borchers, C. H. (2019). Proteogenomics of colorectal cancer liver metastases: Complementing precision oncology with phenotypic data. Cancers, 11(12), 1907. https://doi.org/10.3390/cancers11121907
Dixon, T. A., & Pretorius, I. S. (2020). Drawing on the past to shape the future of synthetic yeast research. International Journal of Molecular Sciences, 21(19), 7156. https://doi.org/10.3390/ijms21197156
Felley-Bosco, E. (2023). Exploring the expression of the "dark matter" of the genome in mesothelioma for potentially predictive biomarkers for prognosis and immunotherapy. Cancers, 15(11), 2969. https://doi.org/10.3390/cancers15112969
Fu, J., Gao, Q., & Li, S. (2023). Application of intelligent medical sensing technology. Biosensors, 13(8), 812. https://doi.org/10.3390/bios13080812
Imamoglu, E. (2024). Artificial intelligence and/or machine learning algorithms in microalgae bioprocesses. Bioengineering, 11(11), 1143. https://doi.org/10.3390/bioengineering11111143
Liu, X., Tang, K., & Hu, J. (2024). Application of cyanobacteria as chassis cells in synthetic biology. Microorganisms, 12(7), 1375. https://doi.org/10.3390/microorganisms12071375
Quaranta, G., Guarnaccia, A., Fancello, G., Agrillo, C., Iannarelli, F., Sanguinetti, M., & Masucci, L. (2022). Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms, 10(12), 2424. https://doi.org/10.3390/microorganisms10122424
Scott, T. A., & Piel, J. (2019). The hidden enzymology of bacterial natural product biosynthesis. Nature Reviews Chemistry, 3(7), 404–425. https://doi.org/10.1038/s41570-019-0107-1
Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., … Nelson, W. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66–74. https://doi.org/10.1126/science.1093857
Gillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., … Handelsman, J. (2002). Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Applied and Environmental Microbiology, 68(9), 4301–4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
Feng, Z., Chakraborty, D., Dewell, S. B., Reddy, B. V. B., & Brady, S. F. (2012). Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. Journal of the American Chemical Society, 134(6), 2981–2987. https://doi.org/10.1021/ja207662w
Oruganti, R. K., Biji, A. P., Lanuyanger, T., Show, P. L., & Bhattacharyya, D. (2023). AI and ML tools for high-performance microalgal wastewater treatment. Science of The Total Environment, 876, 162797. https://doi.org/10.1016/j.scitotenv.2023.162797
Kavitha, S., Ravi, Y. K., Kumar, G., & Nandabalan, Y. K. (2024). Microalgal biorefineries: Advancement in machine learning tools. Journal of Environmental Management, 353, 120135. https://doi.org/10.1016/j.jenvman.2024.120135
Wu, C., Shang, Z., Lemetre, C., Ternei, M. A., & Brady, S. F. (2019). Cadasides, calcium-dependent acidic lipopeptides from the soil metagenome that are active against multidrug-resistant bacteria. Journal of the American Chemical Society, 141(9), 3910–3919. https://doi.org/10.1021/jacs.8b12087
Reddy, B. V. B., Milshteyn, A., Charlop-Powers, Z., & Brady, S. F. (2014). eSNaPD: A versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chemistry & Biology, 21(8), 1023–1033. https://doi.org/10.1016/j.chembiol.2014.06.007
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., … Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431–437. https://doi.org/10.1038/nature12352
Piel, J. (2002). A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proceedings of the National Academy of Sciences, 99(22), 14002–14007. https://doi.org/10.1073/pnas.222481399
Hildebrand, M., Waggoner, L. E., Liu, H., Sudek, S., Allen, S., Anderson, C., … Haygood, M. (2004). bryA: An unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chemistry & Biology, 11(11), 1543–1552. https://doi.org/10.1016/j.chembiol.2004.08.018
Handelsman, J. (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
Mertins, P., Mani, D. R., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., … Carr, S. A. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62. https://doi.org/10.1038/nature18003
Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., … Tabb, D. L. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature, 513(7518), 382–387. https://doi.org/10.1038/nature13438
Huang, K. L., Li, S., Mertins, P., Cao, S., Gunawardena, H. P., Ruggles, K. V., … Ding, L. (2017). Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 8(1), 14864. https://doi.org/10.1038/ncomms14864
Luan, G., Zhang, S., & Lu, X. (2020). Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Current Opinion in Biotechnology, 62, 1–6. https://doi.org/10.1016/j.copbio.2019.07.004
Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., … Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 5(1), 8132. https://doi.org/10.1038/srep08132
Article metrics
View details
0
Downloads
0
Citations
11
Views
0
Save
Save
0
Citation
Citation
11
View
View
0
Share
Share