Integrative Disciplinary Research | Online ISSN 3064-9870 | Print ISSN 3069-4353
RESEARCH ARTICLE   (Open Access)

Integrating Artificial Intelligence and Machine Learning into U.S. Financial Risk Management Systems

Mitu Akter1*, Md. Rezaul Haque2, Md Iqbal Hossain3

+ Author Affiliations

Journal of Primeasia 6 (1) 1-8 https://doi.org/10.25163/primeasia.6110430

Submitted: 03 September 2025 Revised: 04 November 2025  Accepted: 11 November 2025  Published: 13 November 2025 


Abstract

Background: The financial industry operates under multiple complex risks which stem from market fluctuations and operational breakdowns and credit payment failures and digital security breaches. Traditional risk management systems base their predictions on linear models which use past data but this approach produces inaccurate forecasts. Artificial Intelligence (AI) systems together with Machine Learning (ML) models operate through data-based adaptive techniques which boost risk detection capabilities and predictive accuracy and operational productivity.

Methods: A structured questionnaire was administered to 310 financial professionals across commercial banks, investment firms, and regulatory agencies.AI models, including Random Forest, Gradient Boosting, and Long Short-Term Memory (LSTM) networks, were implemented and compared with traditional regression models. The evaluation of performance used prediction accuracy and R² and correlation (r) and statistical significance (p) to compare results with questionnaire responses.

Results: The survey showed that 68% of participants achieved better prediction results and 54% experienced improved operational performance through their AI implementation. The LSTM model showed the best results when compared to other AI and traditional models by reaching a correlation value of 0.82 with observed outcomes at p=0.004. AI system integration into risk management processes led to a 27-41% decrease in decision-making time and a 32-38% increase in fraud detection effectiveness which produced both statistical and operational benefits.

Conclusion: The integration of AI and ML technologies into financial risk management systems produces better prediction accuracy and improved operational performance and faster decision-making.

Keywords: Artificial Intelligence, Machine Learning, Financial Risk Management, Predictive Analytics, Fraud Detection

References

Alnahit, A. O., Mishra, A. K., & Khan, A. A. (2022). Stream water quality prediction using boosted regression tree and random forest models. Stochastic Environmental Research and Risk Assessment, 36(9), 2661–2680. https://doi.org/10.1007/s00477-021-02152-4

Bouchetara, M., Zerouti, M., & Zouambi, A. R. (2024). LEVERAGING ARTIFICIAL INTELLIGENCE (AI) IN PUBLIC SECTOR FINANCIAL RISK MANAGEMENT: INNOVATIONS, CHALLENGES, AND FUTURE DIRECTIONS. EDPACS, 69(9), 124–144. https://doi.org/10.1080/07366981.2024.2377351

Chang, T., & Hsu, M. (2016). Integration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk management. International Journal of Machine Learning and Cybernetics, 9(3), 477–489. https://doi.org/10.1007/s13042-016-0545-8

Curtis, J. R., Van Der Helm-van Mil, A. H., Knevel, R., Huizinga, T. W., Haney, D. J., Shen, Y., Ramanujan, S., Cavet, G., Centola, M., Hesterberg, L. K., Chernoff, D., Ford, K., Shadick, N. A., Hamburger, M., Fleischmann, R., Keystone, E., & Weinblatt, M. E. (2012). Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care & Research, 64(12), 1794–1803. https://doi.org/10.1002/acr.21767

Darwiesh, A., El-Baz, A. H., Abualkishik, A. Z., & Elhoseny, M. (2022). Artificial Intelligence model for risk management in Healthcare Institutions: Towards Sustainable Development. Sustainability, 15(1), 420. https://doi.org/10.3390/su15010420

Di Nunno, F., Giudicianni, C., Creaco, E., & Granata, F. (2023). Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network. Groundwater for Sustainable Development, 23, 101042. https://doi.org/10.1016/j.gsd.2023.101042

Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., & Tao, X. (2021). Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96751-4

Granato, D., De Araújo Calado, V. M., & Jarvis, B. (2013). Observations on the use of statistical methods in Food Science and Technology. Food Research International, 55, 137–149. https://doi.org/10.1016/j.foodres.2013.10.024

Hajj, M. E., & Hammoud, J. (2023). Unveiling the Influence of artificial intelligence and machine learning on financial markets: A comprehensive analysis of AI applications in trading, risk management, and financial operations. Journal of Risk and Financial Management, 16(10), 434. https://doi.org/10.3390/jrfm16100434

Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2022). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2

Hu, W., & Chen, Y. (2022). Application of artificial intelligence in financial risk management. In Lecture notes in computer science (pp. 180–188). https://doi.org/10.1007/978-3-031-06794-5_15

Ibrahim, A., Almasria, N. A., Alhatabat, Z. A., Ershaid, D. J. A., & Aldboush, H. H. (2024). Transforming financial services with artificial intelligence and machine learning. In Advances in finance, accounting, and economics book series (pp. 129–148). https://doi.org/10.4018/979-8-3693-8507-4.ch008

Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2021). Machine learning towards intelligent systems: applications, challenges, and opportunities. Artificial Intelligence Review, 54(5), 3299–3348. https://doi.org/10.1007/s10462-020-09948-w

Jöhnk, J., Weißert, M., & Wyrtki, K. (2020). Ready or not, AI comes— An interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5–20. https://doi.org/10.1007/s12599-020-00676-7

Kavzoglu, T., & Teke, A. (2022). Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBOOST) and natural gradient boosting (NGBOOST). Arabian Journal for Science and Engineering, 47(6), 7367–7385. https://doi.org/10.1007/s13369-022-06560-8

Khan, M. S. I., Islam, N., Uddin, J., Islam, S., & Nasir, M. K. (2021). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. Journal of King Saud University - Computer and Information Sciences, 34(8), 4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003

Kigo, S. N., Omondi, E. O., & Omolo, B. O. (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44326-w

Lakhchini, W., Wahabi, R., Kabbouri, M. E., Bp, C., & Hassan, S. (2022). Artificial Intelligence & Machine Learning in Finance: A literature review. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.5281/zenodo.7454232

Lempke, L. B., Lynall, R. C., Hoffman, N. L., Devos, H., & Schmidt, J. D. (2020). Slowed driving-reaction time following concussion-symptom resolution. Journal of Sport and Health Science/Journal of Sport and Health Science, 10(2), 145–153. https://doi.org/10.1016/j.jshs.2020.09.005

Masood, A., Hameed, M. M., Srivastava, A., Pham, Q. B., Ahmad, K., Razali, S. F. M., & Baowidan, S. A. (2023). Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47492-z

Mishra, A. K., Tyagi, A. K., & Arowolo, M. O. (2024). Future trends and opportunities in machine learning and artificial intelligence for banking and finance. In Financial Mathematics and Fintech (pp. 211–238). https://doi.org/10.1007/978-3-031-47324-1_13

Mishra, A. K., Tyagi, A. K., Richa, N., & Patra, S. R. (2024). Introduction to machine learning and artificial intelligence in banking and finance. In Financial Mathematics and Fintech (pp. 239–290). https://doi.org/10.1007/978-3-031-47324-1_14

Moradi, H. (2023). Artificial intelligence and machine learning. In Springer eBooks (pp. 317–342). https://doi.org/10.1007/978-3-031-41784-9_19

Park, D. J., Park, M. W., Lee, H., Kim, Y., Kim, Y., & Park, Y. H. (2021). Development of machine learning model for diagnostic disease prediction based on laboratory tests. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87171-5

Ren, X., Mi, Z., & Georgopoulos, P. G. (2020). Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment International, 142, 105827. https://doi.org/10.1016/j.envint.2020.105827

Saheed, Y. K., Ayobami, R. M., & Orje-Ishegh, T. (2022). A comparative study of regression analysis for modelling and prediction of bitcoin price. In EAI/Springer Innovations in Communication and Computing (pp. 187–209). https://doi.org/10.1007/978-3-030-89546-4_10

Salas, M., Lucena, C., Herrera, L. J., Yebra, A., Della Bona, A., & Pérez, M. M. (2018). Translucency thresholds for dental materials. Dental Materials, 34(8), 1168–1174. https://doi.org/10.1016/j.dental.2018.05.001

Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8

Shehadeh, A., Alshboul, O., Mamlook, R. E. A., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/10.1016/j.autcon.2021.103827

Sibindi, R., Mwangi, R. W., & Waititu, A. G. (2022). A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Engineering Reports, 5(4). https://doi.org/10.1002/eng2.12599

Woodman, T., & Hardy, L. (2003). The relative impact of cognitive anxiety and self-confidence upon sport performance: a meta-analysis. Journal of Sports Sciences, 21(6), 443–457. https://doi.org/10.1080/0264041031000101809

Zhou, Y., Liu, Y., Wang, D., & Liu, X. (2021). Comparison of machine-learning models for predicting short-term building heating load using operational parameters. Energy and Buildings, 253, 111505. https://doi.org/10.1016/j.enbuild.2021.111505


View Dimensions


View Plumx


View Altmetric



3
Save
0
Citation
158
View
1
Share