References
Alnahit, A. O., Mishra, A. K., & Khan, A. A. (2022). Stream water quality prediction using boosted regression tree and random forest models. Stochastic Environmental Research and Risk Assessment, 36(9), 2661–2680. https://doi.org/10.1007/s00477-021-02152-4
Bouchetara, M., Zerouti, M., & Zouambi, A. R. (2024). LEVERAGING ARTIFICIAL INTELLIGENCE (AI) IN PUBLIC SECTOR FINANCIAL RISK MANAGEMENT: INNOVATIONS, CHALLENGES, AND FUTURE DIRECTIONS. EDPACS, 69(9), 124–144. https://doi.org/10.1080/07366981.2024.2377351
Chang, T., & Hsu, M. (2016). Integration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk management. International Journal of Machine Learning and Cybernetics, 9(3), 477–489. https://doi.org/10.1007/s13042-016-0545-8
Curtis, J. R., Van Der Helm-van Mil, A. H., Knevel, R., Huizinga, T. W., Haney, D. J., Shen, Y., Ramanujan, S., Cavet, G., Centola, M., Hesterberg, L. K., Chernoff, D., Ford, K., Shadick, N. A., Hamburger, M., Fleischmann, R., Keystone, E., & Weinblatt, M. E. (2012). Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care & Research, 64(12), 1794–1803. https://doi.org/10.1002/acr.21767
Darwiesh, A., El-Baz, A. H., Abualkishik, A. Z., & Elhoseny, M. (2022). Artificial Intelligence model for risk management in Healthcare Institutions: Towards Sustainable Development. Sustainability, 15(1), 420. https://doi.org/10.3390/su15010420
Di Nunno, F., Giudicianni, C., Creaco, E., & Granata, F. (2023). Multi-step ahead groundwater level forecasting in Grand Est, France: Comparison between stacked machine learning model and radial basis function neural network. Groundwater for Sustainable Development, 23, 101042. https://doi.org/10.1016/j.gsd.2023.101042
Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., & Tao, X. (2021). Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96751-4
Granato, D., De Araújo Calado, V. M., & Jarvis, B. (2013). Observations on the use of statistical methods in Food Science and Technology. Food Research International, 55, 137–149. https://doi.org/10.1016/j.foodres.2013.10.024
Hajj, M. E., & Hammoud, J. (2023). Unveiling the Influence of artificial intelligence and machine learning on financial markets: A comprehensive analysis of AI applications in trading, risk management, and financial operations. Journal of Risk and Financial Management, 16(10), 434. https://doi.org/10.3390/jrfm16100434
Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2022). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2
Hu, W., & Chen, Y. (2022). Application of artificial intelligence in financial risk management. In Lecture notes in computer science (pp. 180–188). https://doi.org/10.1007/978-3-031-06794-5_15
Ibrahim, A., Almasria, N. A., Alhatabat, Z. A., Ershaid, D. J. A., & Aldboush, H. H. (2024). Transforming financial services with artificial intelligence and machine learning. In Advances in finance, accounting, and economics book series (pp. 129–148). https://doi.org/10.4018/979-8-3693-8507-4.ch008
Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2021). Machine learning towards intelligent systems: applications, challenges, and opportunities. Artificial Intelligence Review, 54(5), 3299–3348. https://doi.org/10.1007/s10462-020-09948-w
Jöhnk, J., Weißert, M., & Wyrtki, K. (2020). Ready or not, AI comes— An interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5–20. https://doi.org/10.1007/s12599-020-00676-7
Kavzoglu, T., & Teke, A. (2022). Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBOOST) and natural gradient boosting (NGBOOST). Arabian Journal for Science and Engineering, 47(6), 7367–7385. https://doi.org/10.1007/s13369-022-06560-8
Khan, M. S. I., Islam, N., Uddin, J., Islam, S., & Nasir, M. K. (2021). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. Journal of King Saud University - Computer and Information Sciences, 34(8), 4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003
Kigo, S. N., Omondi, E. O., & Omolo, B. O. (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44326-w
Lakhchini, W., Wahabi, R., Kabbouri, M. E., Bp, C., & Hassan, S. (2022). Artificial Intelligence & Machine Learning in Finance: A literature review. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.5281/zenodo.7454232
Lempke, L. B., Lynall, R. C., Hoffman, N. L., Devos, H., & Schmidt, J. D. (2020). Slowed driving-reaction time following concussion-symptom resolution. Journal of Sport and Health Science/Journal of Sport and Health Science, 10(2), 145–153. https://doi.org/10.1016/j.jshs.2020.09.005
Masood, A., Hameed, M. M., Srivastava, A., Pham, Q. B., Ahmad, K., Razali, S. F. M., & Baowidan, S. A. (2023). Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47492-z
Mishra, A. K., Tyagi, A. K., & Arowolo, M. O. (2024). Future trends and opportunities in machine learning and artificial intelligence for banking and finance. In Financial Mathematics and Fintech (pp. 211–238). https://doi.org/10.1007/978-3-031-47324-1_13
Mishra, A. K., Tyagi, A. K., Richa, N., & Patra, S. R. (2024). Introduction to machine learning and artificial intelligence in banking and finance. In Financial Mathematics and Fintech (pp. 239–290). https://doi.org/10.1007/978-3-031-47324-1_14
Moradi, H. (2023). Artificial intelligence and machine learning. In Springer eBooks (pp. 317–342). https://doi.org/10.1007/978-3-031-41784-9_19
Park, D. J., Park, M. W., Lee, H., Kim, Y., Kim, Y., & Park, Y. H. (2021). Development of machine learning model for diagnostic disease prediction based on laboratory tests. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87171-5
Ren, X., Mi, Z., & Georgopoulos, P. G. (2020). Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment International, 142, 105827. https://doi.org/10.1016/j.envint.2020.105827
Saheed, Y. K., Ayobami, R. M., & Orje-Ishegh, T. (2022). A comparative study of regression analysis for modelling and prediction of bitcoin price. In EAI/Springer Innovations in Communication and Computing (pp. 187–209). https://doi.org/10.1007/978-3-030-89546-4_10
Salas, M., Lucena, C., Herrera, L. J., Yebra, A., Della Bona, A., & Pérez, M. M. (2018). Translucency thresholds for dental materials. Dental Materials, 34(8), 1168–1174. https://doi.org/10.1016/j.dental.2018.05.001
Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8
Shehadeh, A., Alshboul, O., Mamlook, R. E. A., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/10.1016/j.autcon.2021.103827
Sibindi, R., Mwangi, R. W., & Waititu, A. G. (2022). A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Engineering Reports, 5(4). https://doi.org/10.1002/eng2.12599
Woodman, T., & Hardy, L. (2003). The relative impact of cognitive anxiety and self-confidence upon sport performance: a meta-analysis. Journal of Sports Sciences, 21(6), 443–457. https://doi.org/10.1080/0264041031000101809
Zhou, Y., Liu, Y., Wang, D., & Liu, X. (2021). Comparison of machine-learning models for predicting short-term building heating load using operational parameters. Energy and Buildings, 253, 111505. https://doi.org/10.1016/j.enbuild.2021.111505
 
         
        