Integrative Disciplinary Research | Online ISSN 3064-9870 | Print ISSN 3069-4353
RESEARCH ARTICLE   (Open Access)

Integrating Clinical Data and Molecular Profiling to Predict Antibiotic-Induced Anaphylaxis: A Comparative Study of Ceftriaxone and Meropenem

Md. Robiul Islam1*, Most Farhana Akter1, Md Abu Bakar Siddique2, Tufael3, Amena Khatun Manica4

+ Author Affiliations

Journal of Primeasia 6 (1) 1-11 https://doi.org/10.25163/primeasia.6110446

Submitted: 31 August 2025 Revised: 15 November 2025  Accepted: 20 November 2025  Published: 22 November 2025 


Abstract

Background: Antibiotic-associated allergies and anaphylaxis remain a major yet preventable threat in modern medicine, often linked to inappropriate prescribing or overuse. Among β-lactam antibiotics, Ceftriaxone has been frequently reported as a leading cause of severe allergic reactions, but the underlying molecular risk factors are still poorly understood.

Objective: This study aimed to identify antibiotic-related medication errors and elucidate molecular interactions contributing to hypersensitivity, focusing on Ceftriaxone and Meropenem.

Methods: Clinical pharmacovigilance data were retrieved from the WHO VigiBase to identify antibiotics most commonly associated with anaphylaxis. Molecular docking was performed using AutoDock Vina (PyRx 0.8) to evaluate drug interactions with the IL4Rα receptor, a key mediator of allergic immune responses. Pharmacokinetic and toxicity profiles were assessed via SwissADME and ProTox-II, while protein–ligand stability was examined using iMODS.

Results: Ceftriaxone demonstrated a stronger binding affinity (-8.2 kcal/mol) to IL4Rα compared to Meropenem (-6.2 kcal/mol), forming multiple stabilizing hydrogen bonds and π-sulfur interactions. Despite its potent interaction, Ceftriaxone exhibited high polarity and poor oral bioavailability, which may influence its systemic allergenic potential. Both drugs were predicted to have low toxicity risks, and iMODS analysis confirmed complex stability. Overall, integrating clinical and molecular analyses provides valuable insight into antibiotic-induced hypersensitivity mechanisms.

Conclusion: These findings support the potential use of IL4Rα molecular profiling as a predictive tool for identifying allergy-prone antibiotics, enabling safer, precision-based prescribing.

Keywords: Antibiotic allergy, Ceftriaxone, Meropenem, IL4Rα, Molecular docking

References

Athanassiou, G., Michaleas, S., Lada-Chitiroglou, E., Tsitsa, T., & Antoniadou-Vyza, E. (2003). Antimicrobial activity of β-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance. Journal of Pharmacy and Pharmacology, 55(3), 291–300. https://doi.org/10.1211/002235702649

Bauer, J. A., Pavlovic, J., & Bauerová-Hlinková, V. (2019). Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules, 24(18), 3293. https://doi.org/10.3390/molecules24183293

Caruso, C., Valluzzi, R. L., Colantuono, S., Gaeta, F., & Romano, A. (2021). β-Lactam Allergy and Cross-Reactivity: A Clinician’s Guide to Selecting an Alternative Antibiotic. Journal of Asthma and Allergy, Volume 14, 31–46. https://doi.org/10.2147/JAA.S242061

Cho, J., Oh, J., Park, J., Jo, H., Kim, T. H., Kim, H., Yim, Y., Park, S., Kim, K., Woo, H. G., Hwang, Y., Miligkos, M., Yon, D. K., & Papadopoulos, N. G. (2025). Global Burden of Drug-Induced Anaphylaxis Associated With 33 Classes of Antibiotics (1968–2024): A Pharmacovigilance Analysis. Clinical & Experimental Allergy. https://doi.org/10.1111/cea.70121

Cirauqui Diaz, N., Frezza, E., & Martin, J. (2021). Using normal mode analysis on protein structural models. How far can we go on our predictions? Proteins: Structure, Function, and Bioinformatics, 89(5), 531–543. https://doi.org/10.1002/prot.26037

Dabhi, M., Patel, R., Shah, V., Soni, R., Saraf, M., Rawal, R., & Goswami, D. (2024). Penicillin-binding proteins: the master builders and breakers of bacterial cell walls and its interaction with β-lactam antibiotics. Journal of Proteins and Proteomics, 15(2), 215–232. https://doi.org/10.1007/s42485-024-00135-x

Eslamloo, K., Kumar, S., Xue, X., Parrish, K. S., Purcell, S. L., Fast, M. D., & Rise, M. L. (2022). Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Scientific Reports, 12(1), 4622. https://doi.org/10.1038/s41598-022-08341-7

Gaspard, I., Guinnepain, M.-T., Laurent, J., Bachot, N., Kerdine, S., Bertoglio, J., Pallardy, M., & Lebrec, H. (2000). IL-4 and IFN-γ mRNA Induction in Human Peripheral Lymphocytes Specific for β-Lactam Antibiotics in Immediate or Delayed Hypersensitivity Reactions. Journal of Clinical Immunology, 20(2), 107–116. https://doi.org/10.1023/A:1006682413834

Gatti, M., & Pea, F. (2024). Pharmacokinetic/pharmacodynamic issues for optimizing treatment with beta-lactams of Gram-negative infections in critically ill orthotopic liver transplant recipients: a comprehensive review. Frontiers in Antibiotics, 3. https://doi.org/10.3389/frabi.2024.1426753

Gayvert, K. M., Madhukar, N. S., & Elemento, O. (2016). A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. Cell Chemical Biology, 23(10), 1294–1301. https://doi.org/10.1016/j.chembiol.2016.07.023

Guglielmi, L., Fontaine, C., Gougat, C., Avinens, O., Eliaou, J. -F., Guglielmi, P., & Demoly, P. (2006). IL-10 promoter and IL4-R α gene SNPs are associated with immediate β -lactam allergy in atopic women. Allergy, 61(8), 921–927. https://doi.org/10.1111/j.1398-9995.2006.01067.x

Han, X., Corson, N., Wade-Mercer, P., Gelein, R., Jiang, J., Sahu, M., Biswas, P., Finkelstein, J. N., Elder, A., & Oberdörster, G. (2012). Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology, 297(1–3), 1–9. https://doi.org/10.1016/j.tox.2012.03.006

Heeb, L. E. M., Egholm, C., & Boyman, O. (2020). Evolution and function of interleukin-4 receptor signaling in adaptive immunity and neutrophils. Genes & Immunity, 21(3), 143–149. https://doi.org/10.1038/s41435-020-0095-7

Jiang, H., Harris, M. B., & Rothman, P. (2000). IL-4/IL-13 signaling beyond JAK/STAT. Journal of Allergy and Clinical Immunology, 105(6), 1063–1070. https://doi.org/10.1067/mai.2000.107604

Krivitskaya, A. V., & Khrenova, M. G. (2022). Evolution of Ceftriaxone Resistance of Penicillin-Binding Proteins 2 Revealed by Molecular Modeling. International Journal of Molecular Sciences, 24(1), 176. https://doi.org/10.3390/ijms24010176

Lagacé-Wiens, P., & Rubinstein, E. (2012). Adverse reactions to β-lactam antimicrobials. Expert Opinion on Drug Safety, 11(3), 381–399. https://doi.org/10.1517/14740338.2012.643866

Le, L., Hao, C., & Rongfei, Z. (2025). Advancements in understanding anaphylaxis: From triggers to therapeutic strategies. Allergy Medicine, 5, 100034. https://doi.org/10.1016/j.allmed.2025.100034

Martin, J. F., Alvarez-Alvarez, R., & Liras, P. (2022). Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms. International Journal of Molecular Sciences, 23(10), 5662. https://doi.org/10.3390/ijms23105662

Maurya, R., Vikal, A., Patel, P., Narang, R. K., & Kurmi, B. Das. (2024). “Enhancing Oral Drug Absorption: Overcoming Physiological and Pharmaceutical Barriers for Improved Bioavailability.” AAPS PharmSciTech, 25(7), 228. https://doi.org/10.1208/s12249-024-02940-5

Md Sakil Amin, & Md Jabir Rashid. (2025). Probiotics as Emerging Neurotherapeutics in Spinal Cord Injury: Modulating Inflammation, Infection, and Regeneration. Microbial Bioactives, 8(1), 1–11. https://doi.org/10.25163/microbbioacts.8110290

Minaldi, E., Phillips, E. J., & Norton, A. (2021). Immediate and Delayed Hypersensitivity Reactions to Beta-Lactam Antibiotics. Clinical Reviews in Allergy & Immunology, 62(3), 449–462. https://doi.org/10.1007/s12016-021-08903-z

Montañez, M. I., Mayorga, C., Bogas, G., Barrionuevo, E., Fernandez-Santamaria, R., Martin-Serrano, A., Laguna, J. J., Torres, M. J., Fernandez, T. D., & Doña, I. (2017). Epidemiology, Mechanisms, and Diagnosis of Drug-Induced Anaphylaxis. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00614

Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S.-M. N., Mbala, B. M., & Lohohola, P. O. (2021). In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. International Journal of TROPICAL DISEASE & Health, 1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492

Nguyen, S. M. T., Rupprecht, C. P., Haque, A., Pattanaik, D., Yusin, J., & Krishnaswamy, G. (2021). Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond. International Journal of Molecular Sciences, 22(15), 7785. https://doi.org/10.3390/ijms22157785

Nicoletti, P., Carr, D. F., Barrett, S., McEvoy, L., Friedmann, P. S., Shear, N. H., Nelson, M. R., Chiriac, A. M., Blanca-López, N., Cornejo-García, J. A., Gaeta, F., Nakonechna, A., Torres, M. J., Caruso, C., Valluzzi, R. L., Floratos, A., Shen, Y., Pavlos, R. K., Phillips, E. J., … Pirmohamed, M. (2021). Beta-lactam-induced immediate hypersensitivity reactions: A genome-wide association study of a deeply phenotyped cohort. Journal of Allergy and Clinical Immunology, 147(5), 1830-1837.e15. https://doi.org/10.1016/j.jaci.2020.10.004

Oner, E., Al-Khafaji, K., Mezher, M. H., Demirhan, I., Suhail Wadi, J., Belge Kurutas, E., Yalin, S., & Choowongkomon, K. (2023). Investigation of berberine and its derivatives in Sars Cov-2 main protease structure by molecular docking, PROTOX-II and ADMET methods: in machine learning and in silico study. Journal of Biomolecular Structure and Dynamics, 41(19), 9366–9381. https://doi.org/10.1080/07391102.2022.2142848

Peña-Mendizabal, E., Morais, S., & Maquieira, Á. (2020). Neo-antigens for the serological diagnosis of IgE-mediated drug allergic reactions to antibiotics cephalosporin, carbapenem and monobactam. Scientific Reports, 10(1), 16037. https://doi.org/10.1038/s41598-020-73109-w

Pichler, W. J. (2022). The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy, 77(2), 404–415. https://doi.org/10.1111/all.14962

Poulsen, L. K., & Hummelshoj, L. (2007). Triggers of IgE class switching and allergy development. Annals of Medicine, 39(6), 440–456. https://doi.org/10.1080/07853890701449354

Radkowski, P., Derkaczew, M., Mazuchowski, M., Moussa, A., Podhorodecka, K., Dawidowska-Fidrych, J., Braczkowska-Skibinska, M., Synia, D., Sliwa, K., Wiszpolska, M., & Majewska, M. (2024). Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics, 13(6), 503. https://doi.org/10.3390/antibiotics13060503

Rahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., Janpan, P., Saengkun, Y., Nabnueangsap, J., Soonkum, T., Sangkudruea, P., Jangpromma, N., Kulchat, S., Patramanon, R., Chaveerach, A., Daduang, J., & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594

Rubio, I., Osuchowski, M. F., Shankar-Hari, M., Skirecki, T., Winkler, M. S., Lachmann, G., La Rosée, P., Monneret, G., Venet, F., Bauer, M., Brunkhorst, F. M., Kox, M., Cavaillon, J.-M., Uhle, F., Weigand, M. A., Flohé, S. B., Wiersinga, W. J., Martin-Fernandez, M., Almansa, R., … Bermejo-Martín, J. F. (2019). Current gaps in sepsis immunology: new opportunities for translational research. The Lancet Infectious Diseases, 19(12), e422–e436. https://doi.org/10.1016/S1473-3099(19)30567-5

Ruzza, P., Vitale, R. M., Hussain, R., Montini, A., Honisch, C., Pozzebon, A., Hughes, C. S., Biondi, B., Amodeo, P., Sechi, G., & Siligardi, G. (2018). Chaperone-like effect of ceftriaxone on HEWL aggregation: A spectroscopic and computational study. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(6), 1317–1326. https://doi.org/10.1016/j.bbagen.2018.02.014

Schnyder, B., & Brockow, K. (2015). Pathogenesis of drug allergy – current concepts and recent insights. Clinical & Experimental Allergy, 45(9), 1376–1383. https://doi.org/10.1111/cea.12591

Siddique, S. A., Mohamed, S. K., Sarfraz, M., Bakhite, E. A., Marae, I. S., Soliman, A. A. E., Khamies, E., Selim, A. F., Qahtan, M. Q. M., Abuelizz, H. A., Al-Salahi, R., Mague, J. T., & El Bakri, Y. (2025). Synthesis, investigation of the crystal structure, DFT and in silico medicinal potential of nicotinonitrile substituted quinazolindione as potential anticancer scaffold. Molecular Physics, 123(16). https://doi.org/10.1080/00268976.2024.2448566

Simons, F. E. R. (2009). Anaphylaxis: Recent advances in assessment and treatment. Journal of Allergy and Clinical Immunology, 124(4), 625–636. https://doi.org/10.1016/j.jaci.2009.08.025

Tolomeo, M., & Cascio, A. (2024). STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. International Reviews of Immunology, 43(6), 394–418. https://doi.org/10.1080/08830185.2024.2395274

Vardakas, K. Z., Kalimeris, G. D., Triarides, N. A., & Falagas, M. E. (2018). An update on adverse drug reactions related to β-lactam antibiotics. Expert Opinion on Drug Safety, 17(5), 499–508. https://doi.org/10.1080/14740338.2018.1462334

Vashishat, A., Patel, P., Das Gupta, G., & Das Kurmi, B. (2024). Alternatives of Animal Models for Biomedical Research: a Comprehensive Review of Modern Approaches. Stem Cell Reviews and Reports, 20(4), 881–899. https://doi.org/10.1007/s12015-024-10701-x

Walters, W. P. (2012). Going further than Lipinski’s rule in drug design. Expert Opinion on Drug Discovery, 7(2), 99–107. https://doi.org/10.1517/17460441.2012.648612

Wilke, M. S., Lovering, A. L., & Strynadka, N. C. (2005). β-Lactam antibiotic resistance: a current structural perspective. Current Opinion in Microbiology, 8(5), 525–533. https://doi.org/10.1016/j.mib.2005.08.016


View Dimensions


View Plumx


View Altmetric



1
Save
0
Citation
109
View
0
Share