Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
RESEARCH ARTICLE   (Open Access)

Computational Exploration of Xanthohumol as a Safer Natural Substitute for Tamoxifen in Estrogen Receptor-Positive Breast Cancer

Amena Khatun Manica1*, Most Farhana Akter2, Md. Robiul Islam2, Tufael3, Md Abu Bakar Siddique4

+ Author Affiliations

Journal of Angiotherapy 6 (2) 1-9 https://doi.org/10.25163/angiotherapy.6210431

Submitted: 04 January 2022 Revised: 17 March 2022  Accepted: 24 March 2022  Published: 26 March 2022 


Abstract

Background: Breast cancer remains a major health burden, with estrogen receptor-positive (ER?) subtypes constituting most cases. Tamoxifen, a selective estrogen receptor modulator (SERM), has been a frontline therapy for decades, yet its long-term use often leads to toxicity, resistance, and pharmacokinetic limitations. This study employed in-silico approaches to assess xanthohumol, a prenylated chalcone derived from Humulus lupulus, as a potential natural substitute for tamoxifen.

Method: Using AutoDock Vina (PDB: 3ERT), both ligands were docked to the ERα ligand-binding domain.

Results: Xanthohumol displayed a slightly superior binding affinity (−8.0 kcal/mol) compared to tamoxifen (−7.5 kcal/mol) and formed a stabilizing hydrogen bond with MET522, along with π–π interactions with TRP383, unlike tamoxifen’s purely hydrophobic contacts. SwissADME analysis revealed xanthohumol to possess better solubility, high gastrointestinal absorption, and no Lipinski violations, indicating strong drug-likeness. ProTox-II toxicity predictions demonstrated a higher LD50 (3800 mg/kg) and fewer toxic liabilities for xanthohumol, while tamoxifen showed elevated neurotoxicity and CYP3A4 interaction risks. The BOILED-Egg model further indicated that xanthohumol has high intestinal absorption but limited blood–brain barrier permeability, suggesting reduced neurotoxic potential.

Conclusion: Overall, these computational findings support xanthohumol as a pharmacologically favorable and safer natural alternative to tamoxifen. Further in-vitro and in-vivo validation is warranted to substantiate its therapeutic viability in hormone-dependent breast cancer.

Keywords: Xanthohumol; Tamoxifen; Estrogen Receptor Alpha (ERα); Molecular Docking; ADMET Analysis

References

Bodai, B. I., & Nakata, T. E. (2020). Breast Cancer: Lifestyle, the Human Gut Microbiota/Microbiome, and Survivorship. The Permanente Journal, 24(4). https://doi.org/10.7812/TPP/19.129

Brglez Mojzer, E., Knez Hrncic, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901

Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In Dosage Form Design Parameters (pp. 731–755). Elsevier. https://doi.org/10.1016/B978-0-12-814421-3.00021-X

Chedik, L., Mias-Lucquin, D., Bruyere, A., & Fardel, O. (2017). In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans. International Journal of Environmental Research and Public Health, 14(7), 708. https://doi.org/10.3390/ijerph14070708

Cox-York, K., Stoecker, E., Hamm, A. K., & Weir, T. L. (2019). Microbial Metabolites in Cancer Promotion or Prevention (pp. 317–346). https://doi.org/10.1007/978-3-030-04155-7_15

GAO, F.-F., LV, J.-W., WANG, Y., FAN, R., LI, Q., ZHANG, Z., & WEI, L. (2016). Tamoxifen induces hepatotoxicity and changes to hepatocyte morphology at the early stage of endocrinotherapy in mice. Biomedical Reports, 4(1), 102–106. https://doi.org/10.3892/br.2015.536

Hale, M. J., Howell, A., Dowsett, M., Cuzick, J., & Sestak, I. (2020). Tamoxifen related side effects and their impact on breast cancer incidence: A retrospective analysis of the randomised IBIS-I trial. The Breast, 54, 216–221. https://doi.org/10.1016/j.breast.2020.10.015

Jameera Begam, A., Jubie, S., & Nanjan, M. J. (2017). Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorganic Chemistry, 71, 257–274. https://doi.org/10.1016/j.bioorg.2017.02.011

Kar, S., & Leszczynski, J. (2018). Recent Advances of Computational Modeling for Predicting Drug Metabolism: A Perspective. Current Drug Metabolism, 18(12), 1106–1122. https://doi.org/10.2174/1389200218666170607102104

Klósek, M., Mertas, A., Król, W., Jaworska, D., Szymszal, J., & Szliszka, E. (2016). Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L. International Journal of Molecular Sciences, 17(6), 837. https://doi.org/10.3390/ijms17060837

Landeros-Martínez, L.-L., Glossman-Mitnik, D., & Flores-Holguín, N. (2018). Interaction of Tamoxifen Analogs With the Pocket Site of Some Hormone Receptors. A Molecular Docking and Density Functional Theory Study. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00293

Liu, M., Hansen, P., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M., & Miao, J. (2015). Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus). Molecules, 20(1), 754–779. https://doi.org/10.3390/molecules20010754

Logan, I. E., Miranda, C. L., Lowry, M. B., Maier, C. S., Stevens, J. F., & Gombart, A. F. (2019). Antiproliferative and Cytotoxic Activity of Xanthohumol and Its Non-Estrogenic Derivatives in Colon and Hepatocellular Carcinoma Cell Lines. International Journal of Molecular Sciences, 20(5), 1203. https://doi.org/10.3390/ijms20051203

Mi, Y., Mao, Y., Cheng, H., Ke, G., Liu, M., Fang, C., & Wang, Q. (2020). Studies of blood–brain barrier permeability of gastrodigenin in vitro and in vivo. Fitoterapia, 140, 104447. https://doi.org/10.1016/j.fitote.2019.104447

Miller, M. M., McMullen, P. D., Andersen, M. E., & Clewell, R. A. (2017). Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro -based risk assessment efforts. Critical Reviews in Toxicology, 47(7), 570–586. https://doi.org/10.1080/10408444.2017.1289150

Miranda, C. L., Johnson, L. A., de Montgolfier, O., Elias, V. D., Ullrich, L. S., Hay, J. J., Paraiso, I. L., Choi, J., Reed, R. L., Revel, J. S., Kioussi, C., Bobe, G., Iwaniec, U. T., Turner, R. T., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Blakemore, P. R., Gombart, A. F., Maier, C. S., … Stevens, J. F. (2018). Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Scientific Reports, 8(1), 613. https://doi.org/10.1038/s41598-017-18992-6

Orhan, I. E., Jedrejek, D., Senol, F. S., Salmas, R. E., Durdagi, S., Kowalska, I., Pecio, L., & Oleszek, W. (2018). Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine, 42, 25–33. https://doi.org/10.1016/j.phymed.2018.03.009

Orias, F., Bony, S., Devaux, A., Durrieu, C., Aubrat, M., Hombert, T., Wigh, A., & Perrodin, Y. (2015). Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems. Chemosphere, 128, 79–84. https://doi.org/10.1016/j.chemosphere.2015.01.002

Saito, K., Matsuo, Y., Imafuji, H., Okubo, T., Maeda, Y., Sato, T., Shamoto, T., Tsuboi, K., Morimoto, M., Takahashi, H., Ishiguro, H., & Takiguchi, S. (2018). Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Science, 109(1), 132–140. https://doi.org/10.1111/cas.13441

Tarnow, P., Tralau, T., & Luch, A. (2019). Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opinion on Drug Metabolism & Toxicology, 15(3), 219–229. https://doi.org/10.1080/17425255.2019.1569627

Testa, U., Castelli, G., & Pelosi, E. (2020). Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Medical Sciences, 8(1), 18. https://doi.org/10.3390/medsci8010018

Thanopoulou, E., Khader, L., Caira, M., Wardley, A., Ettl, J., Miglietta, F., Neven, P., & Guarneri, V. (2020). Therapeutic Strategies for the Management of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Positive (HR+/HER2+) Breast Cancer: A Review of the Current Literature. Cancers, 12(11), 3317. https://doi.org/10.3390/cancers12113317

Trifunovic, J., Borcic, V., Vukmirovic, S., & Mikov, M. (2017). Structural insights into anticancer activity of D-ring modified estrone derivatives using their lipophilicity in estimation of SAR and molecular docking studies. Drug Testing and Analysis, 9(10), 1542–1548. https://doi.org/10.1002/dta.2172

Wang, C. C., Ho, Y. H., Hung, C. F., Kuo, J. R., & Wang, S. J. (2020). Xanthohumol, an active constituent from hope, affords protection against kainic acid-induced excitotoxicity in rats. Neurochemistry International, 133, 104629. https://doi.org/10.1016/j.neuint.2019.104629

Williamson, G., Kay, C. D., & Crozier, A. (2018). The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351

Yao, J., Deng, K., Huang, J., Zeng, R., & Zuo, J. (2020). Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.592912


View Dimensions


View Plumx


View Altmetric



2
Save
0
Citation
171
View
0
Share