Integrative Biomedical Research

Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
558
Citations
1.2m
Views
725
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
Figures and Tables
REVIEWS   (Open Access)

Artificial Intelligence and Digital Health Technologies in Emergency Response Systems

Saed Khalid Salih Alharbi 1, Abdulrhman Abdullah Nazzal Alenazi 1, Majed Suliman Alwalie 1, Abdullah Saleh Abdullah Almorshed 1, Khalid Ghattar Naif Alruways 1, Abdullah Abdulrahman Mohammed Alrbian 1, Eissa Alhumaidi Almuterie 1, Abdulmajeed Muhayya Almutairi 1, Ghadyan Salem Alshammari 2, Muteb Freeh Saleman Alshammari 2, Moteb Rshid Aswi Alshammari 2, Sultan Faris Rasheed Alshammari 2, Bashair Maqbool Sulaiman Alharbi 3, Abdullah Faraj B. Alosimi 1, Shaima Abdullah Bukhamsin 1

+ Author Affiliations

Integrative Biomedical Research 9 (1) 1-14 https://doi.org/10.25163/biomedical.9110677

Submitted: 05 November 2024 Revised: 08 January 2025  Published: 15 January 2025 


Abstract

Emergency response systems are characterized by complex, high-stress conditions where the timely decision-making process, effective coordination, and patient safety are very essential. The recent technological developments and the artificial intelligence (AI) have dramatically changed the emergency response in pre-hospital, hospital, and disaster management environments. The study discusses the potential of modern technologies and AI-driven solutions to improve the emergency response system and pay closer attention to improving the response time, decision support, patient safety, and the efficiency of the whole system. The important examples of applications to technologies are machine learning-based triage, integration of electronic health records, smart dispatch systems, geographic information systems, telemedicine, wearables, automation, robotics, and AI-based communication systems. The paper examines how real time data gathering and predictive analytics influence early emergency identification and preparedness as well. Besides that, ethical, legal, and operational issues pertaining to the implementation of AI are critically examined, pointing out the problem of data quality, bias, transparency, privacy, and accountability. Lastly, the study identifies the future trends and innovations that are likely to influence the AI-assisted emergency response systems.

Keywords: Emergency response systems; Artificial intelligence; Machine learning; Emergency healthcare; Decision support systems; Predictive analytics; Patient safety; Digital health technologies.

References


Abeynayake, N., Arthur, A., & Gronthos, S. (2021). Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone, 142, 115645. https://doi.org/10.1016/j.bone.2020.115645

Ahn, S., Jung, S., Park, J. H., Cho, H., Moon, S., & Lee, S. (2024). Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting. Resuscitation, 202, 110325. https://doi.org/10.1016/j.resuscitation.2024.110325

Alrawashdeh, A., & Alkhatib, Z. I. (2024). Incidence and outcomes of in-hospital resuscitation for cardiac arrest among paediatric patients in Jordan: A retrospective observational study. BMJ Paediatrics Open, 8, e003013. https://doi.org/10.1136/bmjpo-2024-003013

Aqel, S., Syaj, S., Al-Bzour, A., Abuzanouneh, F., Al-Bzour, N., & Ahmad, J. (2023). Artificial intelligence and machine learning applications in sudden cardiac arrest prediction and management: A comprehensive review. Current Cardiology Reports, 25, 1391–1396. https://doi.org/10.1007/s11886-023-01964-w

Bahrami, A., Khalaji, A., Bahri Najafi, M., et al. (2024). [Article title]. European Journal of Medical Research, 29, 610. https://doi.org/10.12965/jer.1632808.404

Birkun, A. A. (2024). Misinformation on resuscitation and first aid as an uncontrolled problem that demands close attention: A brief scoping review. Public Health, 228, 147–149. https://doi.org/10.1016/j.puhe.2024.01.005

Blomberg, S. N., Christensen, H. C., Lippert, F., Ersbøll, A. K., Torp-Petersen, C., Sayre, M. R., & Folke, F. (2021). Effect of machine learning on dispatcher recognition of out-of-hospital cardiac arrest during calls to emergency medical services: A randomized clinical trial. JAMA Network Open, 4, e2032320. https://doi.org/10.1001/jamanetworkopen.2020.32320

Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., Counts, C. R., & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 138, 322–329. https://doi.org/10.1016/j.resuscitation.2019.01.015

Bonewald, L. (2019). Use it or lose it to age: A review of bone and muscle communication. Bone, 120, 212–218. https://doi.org/10.1016/j.bone.2018.11.002

Brown, G., Conway, S., Ahmad, M., Adegbie, D., Patel, N., Myneni, V., Alradhawi, M., Kumar, N., Obaid, D. R., Pimenta, D., et al. (2022). Role of artificial intelligence in defibrillators: A narrative review. Open Heart, 9, e001976. https://doi.org/10.1136/openhrt-2022-001976

Burtscher, J., Millet, G. P., Place, N., Kayser, B., & Zanou, N. (2021). The muscle–brain axis and neurodegenerative diseases: The key role of mitochondria in exercise-induced neuroprotection. International Journal of Molecular Sciences, 22(12), 6479. https://doi.org/10.3390/ijms22126479

Byrsell, F., Claesson, A., Ringh, M., Svensson, L., Jonsson, M., Nordberg, P., Forsberg, S., Hollenberg, J., & Nord, A. (2021). Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls. Resuscitation, 162, 218–226. https://doi.org/10.1016/j.resuscitation.2021.02.041

Carrigan, A., Roberts, N., Han, J., John, R., Khan, U., Sultani, A., & Austin, E. E. (2023). The digital hospital: A scoping review of how technology is transforming cardiopulmonary care. Heart, Lung and Circulation, 32, 1057–1068. https://doi.org/10.1016/j.hlc.2023.06.725

Chang, H. K., Wu, C. T., Liu, J. H., & Jang, J. S. R. (2018). Using machine learning algorithms in medication for cardiac arrest early warning system construction and forecasting. In Proceedings of the 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI) (pp. 1–4). IEEE.

Chang, X., Xu, S., & Zhang, H. (2022). Regulation of bone health through physical exercise: Mechanisms and types. Frontiers in Endocrinology, 13, 1029475. https://doi.org/10.3389/fendo.2022.1029475

Chen, H., Shang, D., Wen, Y., & Liang, C. (2021). Bone-derived modulators that regulate brain function: Emerging therapeutic targets for neurological disorders. Frontiers in Cell and Developmental Biology, 9, 683457. https://doi.org/10.3389/fcell.2021.683457

Chen, K. W., Wang, Y. C., Liu, M. H., Tsai, B. Y., Wu, M. Y., Hsieh, P. H., Wei, J. T., Shih, E. S., Shiao, Y. T., & Hwang, M. J. (2022). Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care. Frontiers in Cardiovascular Medicine, 9, 1001982.

Chen, X., Li, W., Liu, B., & Yin, R. (2022). The potential role of bone-derived factor ucOCN in the anti-depressive effects of exercise. Advances in Psychological Science, 30, 375–388.

Chen, Y. H., & Lo, R. (2017). Alzheimer’s disease and osteoporosis. Tzu Chi Medical Journal, 29, 138. https://doi.org/10.4103/tcmj.tcmj_9_17

Chen, Y. H., Xu, H., Hu, D., et al. (2023). Traditional medicine in cancer: What is new in 2022. Traditional Medicine Research, 8, 47. https://doi.org/10.53388/TMR20230407047

Chen, Y., Huang, L., Luo, Z., et al. (2024). Pantothenate-encapsulated liposomes combined with exercise for effective inhibition of CRM1-mediated PKM2 translocation in Alzheimer’s therapy. Journal of Controlled Release, 373, 336–357.

Chin, K. C., Hsieh, T. C., Chiang, W. C., Chien, Y. C., Sun, J. T., Lin, H. Y., Hsieh, M. J., Yang, C. W., Chen, A. Y., & Ma, H. M. (2021). Early recognition of a caller’s emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach. Resuscitation, 167, 144–150. https://doi.org/10.1016/j.resuscitation.2021.08.032

Colaianni, G., Cinti, S., Colucci, S., & Grano, M. (2017). Irisin and musculoskeletal health. Annals of the New York Academy of Sciences, 1402, 5–9. https://doi.org/10.1111/nyas.13345

Corr, A., Smith, J., & Baldock, P. (2017). Neuronal control of bone remodeling. Toxicologic Pathology, 45, 894–903.

Delezie, J., & Handschin, C. (2018). Endocrine crosstalk between skeletal muscle and the brain. Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698

Delgado-Calle, J., Sato, A. Y., & Bellido, T. (2017). Role and mechanism of action of sclerostin in bone. Bone, 96, 29–37. https://doi.org/10.1016/j.bone.2016.12.007

Dores, H., Dinis, P., Viegas, J. M., & Freitas, A. (2024). Preparticipation cardiovascular screening of athletes: Current controversies and challenges for the future. Diagnostics, 14, 2445. https://doi.org/10.3390/diagnostics14212445

Du, H., Li, S., Lu, J., et al. (2023). Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis in diabetic foot ulcers. Burns & Trauma, 11, tkad020. https://doi.org/10.1093/burnst/tkad020

Du, Y., Zhang, L., Wang, Z., Zhao, X., & Zou, J. (2021). Endocrine regulation of extra-skeletal organs by bone-derived secreted protein and the effect of mechanical stimulation. Frontiers in Cell and Developmental Biology, 9, 778015. https://doi.org/10.3389/fcell.2021.778015

Dumas, F., Bougouin, W., & Cariou, A. (2019). Cardiac arrest: Prediction models in the early phase of hospitalization. Current Opinion in Critical Care, 25, 204–210. https://doi.org/10.1097/MCC.0000000000000613

El Hechi, M., Gebran, A., Bouardi, H. T., Maurer, L. R., El Moheb, M., Zhuo, D., Dunn, J., Bertsimas, D., Velmahos, G. C., & Kaafarani, H. M. (2022). Validation of the artificial intelligence–based trauma outcomes predictor (TOP) in patients 65 years and older. Surgery, 171, 1687–1694. https://doi.org/10.1016/j.surg.2021.11.016

Fan, J., Qian, C., & Zhou, S. (2023). Machine learning spectroscopy using a two-stage generalized constituent contribution protocol. Research, 6, 0115. https://doi.org/10.34133/research.0115

Feixiang, L., Yanchen, F., Xiang, L., et al. (2023). The mechanism of oxytocin and its receptors in regulating cells in bone metabolism. Frontiers in Pharmacology, 14, 1171732. https://doi.org/10.3389/fphar.2023.1171732

Fortunov, R. M., Cabacungan, E., Barry, J. S., & Jagarapu, J. (2024). Artificial intelligence and informatics in neonatal resuscitation. Seminars in Perinatology, 48, 151992. https://doi.org/10.1016/j.semperi.2024.151992

Fusco, M., Skaper, S. D., Coaccioli, S., Varrassi, G., & Paladini, A. (2017). Degenerative joint diseases and neuroinflammation. Pain Practice, 17, 522–532. https://doi.org/10.1111/papr.12467

Gebran, A., Vapsi, A., Maurer, L. R., El Moheb, M., Naar, L., Thakur, S. S., Sinyard, R., Daye, D., Velmahos, G. C., & Bertsimas, D. (2022). POTTER-ICU: An artificial intelligence smartphone-accessible tool to predict the need for intensive care after emergency surgery. Surgery, 172, 470–475. https://doi.org/10.1016/j.surg.2022.03.023

Gerosa, L., & Lombardi, G. (2021). Bone-to-brain: A round trip in the adaptation to mechanical stimuli. Frontiers in Physiology, 12, 623893. https://doi.org/10.3389/fphys.2021.623893

Gibon, E., Lu, L. Y., Nathan, K., & Goodman, S. B. (2017). Inflammation, ageing, and bone regeneration. Journal of Orthopaedic Translation, 10, 28–35. https://doi.org/10.1016/j.jot.2017.04.002

Giudice, J., & Taylor, J. M. (2017). Muscle as a paracrine and endocrine organ. Current Opinion in Pharmacology, 34, 49–55. https://doi.org/10.1016/j.coph.2017.04.005

Gonzales, M. M., Garbarino, V. R., Pollet, E., et al. (2022). Biological aging processes underlying cognitive decline and neurodegenerative disease. Journal of Clinical Investigation, 132, e158453. https://doi.org/10.1172/JCI158453

Gräsner, J. T., Herlitz, J., Tjelmeland, I. B. M., Wnent, J., Masterson, S., Lilja, G., Bein, B., Böttiger, B. W., Rosell-Ortiz, F., & Nolan, J. P. (2021). European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation, 161, 61–79. https://doi.org/10.1016/j.resuscitation.2021.02.007

Gupta, H. (2024). Oxygen availability during COVID-19 times: A status report. Medical Gas Research, 14, 38. https://doi.org/10.4103/2045-9912.378420

Gupta, R., Khan, R., & Cortes, C. J. (2021). Forgot to exercise? Exercise-derived circulating myokines in Alzheimer’s disease: A perspective. Frontiers in Neurology, 12, 649452. https://doi.org/10.3389/fneur.2021.649452

Hellenthal, K. E. M., Porschen, C., Wnent, J., & Lange, M. (2024). Evolving role of point-of-care ultrasound in prehospital emergency care: A narrative review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 32, 126.

Herrmann, M., Engelke, K., Ebert, R., et al. (2020). Interactions between muscle and bone—Where physics meets biology. Biomolecules, 10, 432. https://doi.org/10.3390/biom10030432

Huang, S., Li, Z., Liu, Y., et al. (2019). Neural regulation of bone remodeling: Identifying novel neural molecules and pathways between brain and bone. Journal of Cellular Physiology, 234, 5466–5477.

Kawai, Y., Kogeichi, Y., Yamamoto, K., Miyazaki, K., Asai, H., & Fukushima, H. (2023). Explainable artificial intelligence-based prediction of poor neurological outcome from head computed tomography in the immediate post-resuscitation phase. Scientific Reports, 13, 5759. https://doi.org/10.1038/s41598-023-32899-5

Kelly, R. R., Sidles, S. J., & LaRue, A. C. (2020). Effects of neurological disorders on bone health. Frontiers in Psychology, 11, 612366. https://doi.org/10.3389/fpsyg.2020.612366

Kennis, M., Gerritsen, L., van Dalen, M., Williams, A., Cuijpers, P., & Bockting, C. (2020). Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Molecular Psychiatry, 25, 321–338. https://doi.org/10.1038/s41380-019-0585-z

Khosla, S. (2023). Evidence in humans for bone as an endocrine organ regulating energy metabolism. Current Opinion in Endocrine and Metabolic Research, 31, 100471. https://doi.org/10.1016/j.coemr.2023.100471

Kiguchi, T., Okubo, M., Nishiyama, C., Maconochie, I., Ong, M. E. H., Kern, K. B., Wyckoff, M. H., McNally, B., Christensen, E. F., & Tjelmeland, I. (2020). Out-of-hospital cardiac arrest across the world: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation, 152, 39–49. https://doi.org/10.1016/j.resuscitation.2020.02.044

Kim, H., Wrann, C. D., Jedrychowski, M., et al. (2018). Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 175, 1756–1768.e17. https://doi.org/10.1016/j.cell.2018.10.025

Kim, J. W., Ha, J., Kim, T., Yoon, H., Hwang, S. Y., Jo, I. J., Shin, T. G., Sim, M. S., & Cha, W. C. (2021). Developing a time-adaptive prediction model for out-of-hospital cardiac arrest: Nationwide cohort study in Korea. Journal of Medical Internet Research, 23, e28361. https://doi.org/10.2196/28361

Kim, S. P., Frey, J. L., Li, Z., et al. (2017). Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 114, E11238–E11247. https://doi.org/10.1073/pnas.1707876114

Lewandowski, M. (2021). A review of the commercially available ECG detection and transmission systems—The fuzzy logic approach in the prevention of sudden cardiac arrest. Micromachines, 12, 1489. https://doi.org/10.3390/mi12121489

Li, W., Zhang, Y., Su, Y., et al. (2022). Intracerebroventricular injection of sclerostin reduced social hierarchy and impaired neuronal dendritic complexity in mice. Neuroscience Letters, 773, 136514. https://doi.org/10.1016/j.neulet.2022.136514

Li, X., Jin, Y., Ding, X., Zhu, T., Wei, C., & Yao, L. (2023). Long-term exercise training inhibits inflammation by suppressing hippocampal NLRP3 in APP/PS1 mice. Sports Medicine and Health Science, 5, 329–335.

Lin, W., Wang, Q., Chen, Y., et al. (2022). Identification of a 6-RBP gene signature for glioma and ischemic stroke. Frontiers in Aging Neuroscience, 14, 951197. https://doi.org/10.3389/fnagi.2022.951197

Luo, S., Wang, L., Xiao, Y., Cao, C., Liu, Q., & Zhou, Y. (2023). Single-cell RNA-sequencing integration analysis revealed immune cell heterogeneity in five human autoimmune diseases. BIO Integration, 4, 145.

Marques-Aleixo, I., Beleza, J., Sampaio, A., et al. (2021). Preventive and therapeutic potential of physical exercise in neurodegenerative diseases. Antioxidants & Redox Signaling, 34(9), 674–693. https://doi.org/10.1089/ars.2020.8114

Martiniakova, M., Biro, R., Penzes, N., et al. (2024). Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target. International Journal of Molecular Sciences, 25(9), 4827. https://doi.org/10.3390/ijms25094827

Maryanovich, M., Takeishi, S., & Frenette, P. S. (2018). Neural regulation of bone and bone marrow. Cold Spring Harbor Perspectives in Medicine, 8, a031344. https://doi.org/10.1101/cshperspect.a031344

Merchant, R. M., Topjian, A. A., Panchal, A. R., Cheng, A., Aziz, K., Berg, K. M., Lavonas, E. J., & Magid, D. J. (2020). Part 1: Executive summary: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(Suppl. 2), S337–S357. https://doi.org/10.1161/CIR.0000000000000918

Moon, H. J., Shin, Y. J., & Cho, Y. S. (2022). Identification of out-of-hospital cardiac arrest clusters using unsupervised learning. American Journal of Emergency Medicine, 62, 41–48. https://doi.org/10.1016/j.ajem.2022.09.035

Müller, M. P., Jonsson, M., Böttiger, B. W., & Rott, N. (2023). Telephone cardiopulmonary resuscitation, first responder systems, cardiac arrest centers, and global campaigns to save lives. Current Opinion in Critical Care, 29, 621–627. https://doi.org/10.1097/MCC.0000000000001112

Murphy, A. C., Muldoon, S. F., Baker, D., et al. (2018). Structure, function, and control of the human musculoskeletal network. PLoS Biology, 16, e2002811. https://doi.org/10.1371/journal.pbio.2002811

Nakamura, M., Imaoka, M., & Takeda, M. (2021). Interaction of bone and brain: Osteocalcin and cognition. International Journal of Neuroscience, 131, 1115–1123.

Narayan, S. M., Wang, P. J., & Daubert, J. P. (2019). New concepts in sudden cardiac arrest to address an intractable epidemic. Journal of the American College of Cardiology, 73, 70–88. https://doi.org/10.1016/j.jacc.2018.09.083

Nazzal, M. K., Morris, A. J., Parker, R. S., et al. (2024). Do not lose your nerve, be callus: Insights into neural regulation of fracture healing. Current Osteoporosis Reports, 22, 182–192. https://doi.org/10.1007/s11914-024-00823-1

Negri, S., Samuel, T. J., & Lee, S. (2021). The potential role of exercise training and mechanical loading on bone-associated skeletal nerves. Journal of Bone Metabolism, 28(4), 267–277. https://doi.org/10.11005/jbm.2021.28.4.267

Nishiyama, C., Kiguchi, T., Okubo, M., Alihodžic, H., Al-Araji, R., Baldi, E., Beganton, F., Booth, S., Bray, J., Christensen, E., et al. (2023). Three-year trends in out-of-hospital cardiac arrest across the world: Second report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation, 186, 109757. https://doi.org/10.1016/j.resuscitation.2023.109757

Nordseth, T., Eftestøl, T., Aramendi, E., Kvaløy, J. T., & Skogvoll, E. (2024). Extracting physiologic and clinical data from defibrillators for research purposes to improve treatment for patients in cardiac arrest. Resuscitation Plus, 18, 100611. https://doi.org/10.1016/j.resplu.2024.100611

Ogawara, T., Usui, A., Homma, N., & Funayama, M. (2023). Diagnosing drowning in postmortem CT images using artificial intelligence. Tohoku Journal of Experimental Medicine, 259, 65–75. https://doi.org/10.1620/tjem.2022.J097

Panchal, A. R., Bartos, J. A., Cabañas, J. G., Donnino, M. W., Drennan, I. R., Hirsch, K. G., Kudenchuk, P. J., Kurz, M. C., Lavonas, E. J., & Morley, P. T. (2020). Part 3: Adult basic and advanced life support: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(Suppl. 2), S366–S468.

Park, D., Kim, D. Y., Byun, M. R., et al. (2022). Undercarboxylated, but not carboxylated, osteocalcin suppresses TNF-α–induced inflammatory signaling pathway in myoblasts. Journal of the Endocrine Society, 6, bvac084. https://doi.org/10.1210/jendso/bvac084

Park, S., Yoon, H., Kang, S. Y., Jo, I. J., Heo, S., Chang, H., Parc, J. E., Lee, G., Kim, T., Hwang, S. Y., et al. (2024). Artificial intelligence-based evaluation of carotid artery compressibility via point-of-care ultrasound in determining return of spontaneous circulation during cardiopulmonary resuscitation. Resuscitation, 202, 110302. https://doi.org/10.1016/j.resuscitation.2024.110302

Pesce, M., La Fratta, I., Paolucci, T., et al. (2021). From exercise to cognitive performance: Role of irisin. Applied Sciences, 11, 7120. https://doi.org/10.3390/app11157120

Piliuk, K., & Tomforde, S. (2023). Artificial intelligence in emergency medicine: A systematic literature review. International Journal of Medical Informatics, 180, 105274. https://doi.org/10.1016/j.ijmedinf.2023.105274

Plodr, M., & Chalusova, E. (2024). Current trends in the management of out-of-hospital cardiac arrest (OHCA). Biomedical Papers of the Medical Faculty of Palacky University, 168, 105–116. https://doi.org/10.5507/bp.2024.006

Qi, J. Y., Yang, L. K., Wang, X. S., et al. (2022). Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Research Bulletin, 188, 11–20. https://doi.org/10.1016/j.brainresbull.2022.05.006

Rai, M., & Demontis, F. (2022). Muscle-to-brain signaling via myokines and myometabolites. Brain Plasticity, 8, 43–63. https://doi.org/10.3233/BPL-210123

Rajagopalan, B., Shen, W. K., Patton, K., et al. (2022). Surviving sudden cardiac arrest—Successes, challenges, and opportunities. Journal of Interventional Cardiac Electrophysiology, 64, 567–571. https://doi.org/10.1007/s10840-021-00969-1

Rawshani, A., Hessulf, F., Deminger, J., Sultanian, P., Gupta, V., Lundgren, P., Mohammed, M., Alchay, M. A., Dioland, T., Gryska, E., et al. (2024). Prediction of neurologic outcome after out-of-hospital cardiac arrest: An interpretable approach with machine learning. Resuscitation, 202, 110359. https://doi.org/10.1016/j.resuscitation.2024.110359

Rietchel, L. J., Belfiore, E. B. R., Sigala, M. E. M., & D’Empaire, P. P. (2024). Point-of-care ultrasound in trauma and the evolving role of the anesthesiologist: A narrative review of emerging topic trends. Current Anesthesiology Reports, 15, 2. https://doi.org/10.1007/s40140-024-00682-5

Scheiblich, H., Trombly, M., Ramirez, A., & Heneka, M. T. (2020). Neuroimmune connections in aging and neurodegenerative diseases. Trends in Immunology, 41, 300–312. https://doi.org/10.1016/j.it.2020.02.002

Schnaubelt, S., Monsieurs, K. G., Fijacko, N., Veigl, C., Al-Hilali, Z., Atiq, H., Bigham, B. L., Eastwood, K., Ko, Y. C., Matsuyama, T., et al. (2024). International facets of the “chain of survival” for out-of-hospital and in-hospital cardiac arrest: A scoping review. Resuscitation Plus, 19, 100689. https://doi.org/10.1016/j.resplu.2024.100689

Schurman, C. A., Burton, J. B., Rose, J., et al. (2023). Molecular and cellular crosstalk between bone and brain during aging and disease. Journal of Bone Metabolism, 30, 1–29.

Scquizzato, T., Gamberini, L., & Semeraro, F. (2022). How technology can save lives in cardiac arrest. Current Opinion in Critical Care, 28, 250–255. https://doi.org/10.1097/MCC.0000000000000930

Semeraro, F., Schnaubelt, S., Malta Hansen, C., et al. (2024). Cardiac arrest and cardiopulmonary resuscitation in the next decade: Predicting and shaping the impact of technological innovations. Resuscitation, 200, 110250. https://doi.org/10.1016/j.resuscitation.2024.110250

Shao, Y., Yang, Z., Chen, W., & Zhang, Y. (2024). Implementing an intelligent diagnosis and treatment system for in-hospital cardiac arrest in the Utstein style: A multi-center case study. Journal of Translational Medicine, 22, 996. https://doi.org/10.1186/s12967-024-05792-6

Shen, C. P., Freed, B. C., Walter, D. P., Perry, J. C., Barakat, A. F., Elashery, A. R. A., Shah, K. S., Kutty, S., McGillion, M., & Ng, F. S. (2023). Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator. Journal of the American Heart Association, 12, e026974. https://doi.org/10.1161/JAHA.122.026974

Shen, Y., Xu, Y., & Bao, Y. (2020). Interaction among skeleton, body fat and cardiovascular diseases mediated by osteocalcin. Obesity Medicine, 17, 100184. https://doi.org/10.1016/j.obmed.2020.100184

Shi, H., & Chen, M. (2024). The brain–bone axis: Unraveling the complex interplay between the central nervous system and skeletal metabolism. European Journal of Medical Research, 29, 317. https://doi.org/10.1186/s40001-024-01738-1

Shin, S. J., Bae, H. S., Moon, H. J., Kim, G. W., Cho, Y. S., Lee, D. W., Jeong, D. K., Kim, H. J., & Lee, H. J. (2023). Evaluation of optimal scene time interval for out-of-hospital cardiac arrest using a deep neural network. American Journal of Emergency Medicine, 63, 29–37. https://doi.org/10.1016/j.ajem.2022.10.011

Thorn, S., Güting, H., Maegele, M., Gruen, R. L., & Mitra, B. (2019). Early identification of acute traumatic coagulopathy using clinical prediction tools: A systematic review. Medicina, 55, 653. https://doi.org/10.3390/medicina55100653

Trindade, L. P., Prieto, A. V., Costa, R. M. D., et al. (2023). Correlation between sarcopenia, risk of falls and mortality in the elderly: A systematic review and meta-analysis. Arquivos de Ciências da Saúde da UNIPAR, 27, 5704–5721.

Urquiaga, M., & Saag, K. G. (2022). Risk for osteoporosis and fracture with glucocorticoids. Best Practice & Research Clinical Rheumatology, 36, 101793. https://doi.org/10.1016/j.berh.2022.101793

Wang, J. S., Mazur, C. M., & Wein, M. N. (2021). Sclerostin and osteocalcin: Candidate bone-produced hormones. Frontiers in Endocrinology, 12, 584147. https://doi.org/10.3389/fendo.2021.584147

Xu, J., Zhang, Z., Zhao, J., et al. (2022). Interaction between the nervous and skeletal systems. Frontiers in Cell and Developmental Biology, 10, 976736. https://doi.org/10.3389/fcell.2022.976736

Xu, Y., Liu, X., Tsuji, K., Hamaoka, T., & Tabata, I. (2024). Oxygen uptake during the last bouts of exercise incorporated into high-intensity intermittent cross-exercise exceeds VO2max. Sports Medicine and Health Science, 6, 63–69.

Yu, X., & Pan, S. (2024). Role and mechanism of cGAS-STING pathway in the cardiovascular system. Reviews in Cardiovascular Medicine, 25, 135. https://doi.org/10.31083/j.rcm2504135

Zhang, F., & Zhang, W. (2024). Research progress in Alzheimer’s disease and the bone–brain axis. Ageing Research Reviews, 98, 102341. https://doi.org/10.1016/j.arr.2024.102341

Zhao, Z., Yan, K., Guan, Q., Guo, Q., & Zhao, C. (2024). Mechanism and physical activities in bone–skeletal muscle crosstalk. Frontiers in Endocrinology, 14, 1287972. https://doi.org/10.3389/fendo.2023.1287972

Zicari, R. V., Brusseau, J., Blomberg, S. N., Christensen, H. C., Coffee, M., Ganapini, M. B., Gerke, S., Gilbert, T., Hikman, E., & Hildt, E. (2021). On assessing trustworthy AI in healthcare: Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Frontiers in Human Dynamics, 3, 673104. https://doi.org/10.3389/fhumd.2021.673104


Article metrics
View details
0
Downloads
0
Citations
72
Views
📖 Cite article

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
72
View
0
Share