References
Abeynayake, N., Arthur, A., & Gronthos, S. (2021). Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone, 142, 115645. https://doi.org/10.1016/j.bone.2020.115645
Ahn, S., Jung, S., Park, J. H., Cho, H., Moon, S., & Lee, S. (2024). Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting. Resuscitation, 202, 110325. https://doi.org/10.1016/j.resuscitation.2024.110325
Alrawashdeh, A., & Alkhatib, Z. I. (2024). Incidence and outcomes of in-hospital resuscitation for cardiac arrest among paediatric patients in Jordan: A retrospective observational study. BMJ Paediatrics Open, 8, e003013. https://doi.org/10.1136/bmjpo-2024-003013
Aqel, S., Syaj, S., Al-Bzour, A., Abuzanouneh, F., Al-Bzour, N., & Ahmad, J. (2023). Artificial intelligence and machine learning applications in sudden cardiac arrest prediction and management: A comprehensive review. Current Cardiology Reports, 25, 1391–1396. https://doi.org/10.1007/s11886-023-01964-w
Bahrami, A., Khalaji, A., Bahri Najafi, M., et al. (2024). [Article title]. European Journal of Medical Research, 29, 610. https://doi.org/10.12965/jer.1632808.404
Birkun, A. A. (2024). Misinformation on resuscitation and first aid as an uncontrolled problem that demands close attention: A brief scoping review. Public Health, 228, 147–149. https://doi.org/10.1016/j.puhe.2024.01.005
Blomberg, S. N., Christensen, H. C., Lippert, F., Ersbøll, A. K., Torp-Petersen, C., Sayre, M. R., & Folke, F. (2021). Effect of machine learning on dispatcher recognition of out-of-hospital cardiac arrest during calls to emergency medical services: A randomized clinical trial. JAMA Network Open, 4, e2032320. https://doi.org/10.1001/jamanetworkopen.2020.32320
Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., Counts, C. R., & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 138, 322–329. https://doi.org/10.1016/j.resuscitation.2019.01.015
Bonewald, L. (2019). Use it or lose it to age: A review of bone and muscle communication. Bone, 120, 212–218. https://doi.org/10.1016/j.bone.2018.11.002
Brown, G., Conway, S., Ahmad, M., Adegbie, D., Patel, N., Myneni, V., Alradhawi, M., Kumar, N., Obaid, D. R., Pimenta, D., et al. (2022). Role of artificial intelligence in defibrillators: A narrative review. Open Heart, 9, e001976. https://doi.org/10.1136/openhrt-2022-001976
Burtscher, J., Millet, G. P., Place, N., Kayser, B., & Zanou, N. (2021). The muscle–brain axis and neurodegenerative diseases: The key role of mitochondria in exercise-induced neuroprotection. International Journal of Molecular Sciences, 22(12), 6479. https://doi.org/10.3390/ijms22126479
Byrsell, F., Claesson, A., Ringh, M., Svensson, L., Jonsson, M., Nordberg, P., Forsberg, S., Hollenberg, J., & Nord, A. (2021). Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls. Resuscitation, 162, 218–226. https://doi.org/10.1016/j.resuscitation.2021.02.041
Carrigan, A., Roberts, N., Han, J., John, R., Khan, U., Sultani, A., & Austin, E. E. (2023). The digital hospital: A scoping review of how technology is transforming cardiopulmonary care. Heart, Lung and Circulation, 32, 1057–1068. https://doi.org/10.1016/j.hlc.2023.06.725
Chang, H. K., Wu, C. T., Liu, J. H., & Jang, J. S. R. (2018). Using machine learning algorithms in medication for cardiac arrest early warning system construction and forecasting. In Proceedings of the 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI) (pp. 1–4). IEEE.
Chang, X., Xu, S., & Zhang, H. (2022). Regulation of bone health through physical exercise: Mechanisms and types. Frontiers in Endocrinology, 13, 1029475. https://doi.org/10.3389/fendo.2022.1029475
Chen, H., Shang, D., Wen, Y., & Liang, C. (2021). Bone-derived modulators that regulate brain function: Emerging therapeutic targets for neurological disorders. Frontiers in Cell and Developmental Biology, 9, 683457. https://doi.org/10.3389/fcell.2021.683457
Chen, K. W., Wang, Y. C., Liu, M. H., Tsai, B. Y., Wu, M. Y., Hsieh, P. H., Wei, J. T., Shih, E. S., Shiao, Y. T., & Hwang, M. J. (2022). Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care. Frontiers in Cardiovascular Medicine, 9, 1001982.
Chen, X., Li, W., Liu, B., & Yin, R. (2022). The potential role of bone-derived factor ucOCN in the anti-depressive effects of exercise. Advances in Psychological Science, 30, 375–388.
Chen, Y. H., & Lo, R. (2017). Alzheimer’s disease and osteoporosis. Tzu Chi Medical Journal, 29, 138. https://doi.org/10.4103/tcmj.tcmj_9_17
Chen, Y. H., Xu, H., Hu, D., et al. (2023). Traditional medicine in cancer: What is new in 2022. Traditional Medicine Research, 8, 47. https://doi.org/10.53388/TMR20230407047
Chen, Y., Huang, L., Luo, Z., et al. (2024). Pantothenate-encapsulated liposomes combined with exercise for effective inhibition of CRM1-mediated PKM2 translocation in Alzheimer’s therapy. Journal of Controlled Release, 373, 336–357.
Chin, K. C., Hsieh, T. C., Chiang, W. C., Chien, Y. C., Sun, J. T., Lin, H. Y., Hsieh, M. J., Yang, C. W., Chen, A. Y., & Ma, H. M. (2021). Early recognition of a caller’s emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach. Resuscitation, 167, 144–150. https://doi.org/10.1016/j.resuscitation.2021.08.032
Colaianni, G., Cinti, S., Colucci, S., & Grano, M. (2017). Irisin and musculoskeletal health. Annals of the New York Academy of Sciences, 1402, 5–9. https://doi.org/10.1111/nyas.13345
Corr, A., Smith, J., & Baldock, P. (2017). Neuronal control of bone remodeling. Toxicologic Pathology, 45, 894–903.
Delezie, J., & Handschin, C. (2018). Endocrine crosstalk between skeletal muscle and the brain. Frontiers in Neurology, 9, 698. https://doi.org/10.3389/fneur.2018.00698
Delgado-Calle, J., Sato, A. Y., & Bellido, T. (2017). Role and mechanism of action of sclerostin in bone. Bone, 96, 29–37. https://doi.org/10.1016/j.bone.2016.12.007
Dores, H., Dinis, P., Viegas, J. M., & Freitas, A. (2024). Preparticipation cardiovascular screening of athletes: Current controversies and challenges for the future. Diagnostics, 14, 2445. https://doi.org/10.3390/diagnostics14212445
Du, H., Li, S., Lu, J., et al. (2023). Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis in diabetic foot ulcers. Burns & Trauma, 11, tkad020. https://doi.org/10.1093/burnst/tkad020
Du, Y., Zhang, L., Wang, Z., Zhao, X., & Zou, J. (2021). Endocrine regulation of extra-skeletal organs by bone-derived secreted protein and the effect of mechanical stimulation. Frontiers in Cell and Developmental Biology, 9, 778015. https://doi.org/10.3389/fcell.2021.778015
Dumas, F., Bougouin, W., & Cariou, A. (2019). Cardiac arrest: Prediction models in the early phase of hospitalization. Current Opinion in Critical Care, 25, 204–210. https://doi.org/10.1097/MCC.0000000000000613
El Hechi, M., Gebran, A., Bouardi, H. T., Maurer, L. R., El Moheb, M., Zhuo, D., Dunn, J., Bertsimas, D., Velmahos, G. C., & Kaafarani, H. M. (2022). Validation of the artificial intelligence–based trauma outcomes predictor (TOP) in patients 65 years and older. Surgery, 171, 1687–1694. https://doi.org/10.1016/j.surg.2021.11.016
Fan, J., Qian, C., & Zhou, S. (2023). Machine learning spectroscopy using a two-stage generalized constituent contribution protocol. Research, 6, 0115. https://doi.org/10.34133/research.0115
Feixiang, L., Yanchen, F., Xiang, L., et al. (2023). The mechanism of oxytocin and its receptors in regulating cells in bone metabolism. Frontiers in Pharmacology, 14, 1171732. https://doi.org/10.3389/fphar.2023.1171732
Fortunov, R. M., Cabacungan, E., Barry, J. S., & Jagarapu, J. (2024). Artificial intelligence and informatics in neonatal resuscitation. Seminars in Perinatology, 48, 151992. https://doi.org/10.1016/j.semperi.2024.151992
Fusco, M., Skaper, S. D., Coaccioli, S., Varrassi, G., & Paladini, A. (2017). Degenerative joint diseases and neuroinflammation. Pain Practice, 17, 522–532. https://doi.org/10.1111/papr.12467
Gebran, A., Vapsi, A., Maurer, L. R., El Moheb, M., Naar, L., Thakur, S. S., Sinyard, R., Daye, D., Velmahos, G. C., & Bertsimas, D. (2022). POTTER-ICU: An artificial intelligence smartphone-accessible tool to predict the need for intensive care after emergency surgery. Surgery, 172, 470–475. https://doi.org/10.1016/j.surg.2022.03.023
Gerosa, L., & Lombardi, G. (2021). Bone-to-brain: A round trip in the adaptation to mechanical stimuli. Frontiers in Physiology, 12, 623893. https://doi.org/10.3389/fphys.2021.623893
Gibon, E., Lu, L. Y., Nathan, K., & Goodman, S. B. (2017). Inflammation, ageing, and bone regeneration. Journal of Orthopaedic Translation, 10, 28–35. https://doi.org/10.1016/j.jot.2017.04.002
Giudice, J., & Taylor, J. M. (2017). Muscle as a paracrine and endocrine organ. Current Opinion in Pharmacology, 34, 49–55. https://doi.org/10.1016/j.coph.2017.04.005
Gonzales, M. M., Garbarino, V. R., Pollet, E., et al. (2022). Biological aging processes underlying cognitive decline and neurodegenerative disease. Journal of Clinical Investigation, 132, e158453. https://doi.org/10.1172/JCI158453
Gräsner, J. T., Herlitz, J., Tjelmeland, I. B. M., Wnent, J., Masterson, S., Lilja, G., Bein, B., Böttiger, B. W., Rosell-Ortiz, F., & Nolan, J. P. (2021). European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation, 161, 61–79. https://doi.org/10.1016/j.resuscitation.2021.02.007
Gupta, H. (2024). Oxygen availability during COVID-19 times: A status report. Medical Gas Research, 14, 38. https://doi.org/10.4103/2045-9912.378420
Gupta, R., Khan, R., & Cortes, C. J. (2021). Forgot to exercise? Exercise-derived circulating myokines in Alzheimer’s disease: A perspective. Frontiers in Neurology, 12, 649452. https://doi.org/10.3389/fneur.2021.649452
Hellenthal, K. E. M., Porschen, C., Wnent, J., & Lange, M. (2024). Evolving role of point-of-care ultrasound in prehospital emergency care: A narrative review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 32, 126.
Herrmann, M., Engelke, K., Ebert, R., et al. (2020). Interactions between muscle and bone—Where physics meets biology. Biomolecules, 10, 432. https://doi.org/10.3390/biom10030432
Huang, S., Li, Z., Liu, Y., et al. (2019). Neural regulation of bone remodeling: Identifying novel neural molecules and pathways between brain and bone. Journal of Cellular Physiology, 234, 5466–5477.
Kawai, Y., Kogeichi, Y., Yamamoto, K., Miyazaki, K., Asai, H., & Fukushima, H. (2023). Explainable artificial intelligence-based prediction of poor neurological outcome from head computed tomography in the immediate post-resuscitation phase. Scientific Reports, 13, 5759. https://doi.org/10.1038/s41598-023-32899-5
Kelly, R. R., Sidles, S. J., & LaRue, A. C. (2020). Effects of neurological disorders on bone health. Frontiers in Psychology, 11, 612366. https://doi.org/10.3389/fpsyg.2020.612366
Kennis, M., Gerritsen, L., van Dalen, M., Williams, A., Cuijpers, P., & Bockting, C. (2020). Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Molecular Psychiatry, 25, 321–338. https://doi.org/10.1038/s41380-019-0585-z
Khosla, S. (2023). Evidence in humans for bone as an endocrine organ regulating energy metabolism. Current Opinion in Endocrine and Metabolic Research, 31, 100471. https://doi.org/10.1016/j.coemr.2023.100471
Kiguchi, T., Okubo, M., Nishiyama, C., Maconochie, I., Ong, M. E. H., Kern, K. B., Wyckoff, M. H., McNally, B., Christensen, E. F., & Tjelmeland, I. (2020). Out-of-hospital cardiac arrest across the world: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation, 152, 39–49. https://doi.org/10.1016/j.resuscitation.2020.02.044
Kim, H., Wrann, C. D., Jedrychowski, M., et al. (2018). Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 175, 1756–1768.e17. https://doi.org/10.1016/j.cell.2018.10.025
Kim, J. W., Ha, J., Kim, T., Yoon, H., Hwang, S. Y., Jo, I. J., Shin, T. G., Sim, M. S., & Cha, W. C. (2021). Developing a time-adaptive prediction model for out-of-hospital cardiac arrest: Nationwide cohort study in Korea. Journal of Medical Internet Research, 23, e28361. https://doi.org/10.2196/28361
Kim, S. P., Frey, J. L., Li, Z., et al. (2017). Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 114, E11238–E11247. https://doi.org/10.1073/pnas.1707876114
Lewandowski, M. (2021). A review of the commercially available ECG detection and transmission systems—The fuzzy logic approach in the prevention of sudden cardiac arrest. Micromachines, 12, 1489. https://doi.org/10.3390/mi12121489
Li, W., Zhang, Y., Su, Y., et al. (2022). Intracerebroventricular injection of sclerostin reduced social hierarchy and impaired neuronal dendritic complexity in mice. Neuroscience Letters, 773, 136514. https://doi.org/10.1016/j.neulet.2022.136514
Li, X., Jin, Y., Ding, X., Zhu, T., Wei, C., & Yao, L. (2023). Long-term exercise training inhibits inflammation by suppressing hippocampal NLRP3 in APP/PS1 mice. Sports Medicine and Health Science, 5, 329–335.
Lin, W., Wang, Q., Chen, Y., et al. (2022). Identification of a 6-RBP gene signature for glioma and ischemic stroke. Frontiers in Aging Neuroscience, 14, 951197. https://doi.org/10.3389/fnagi.2022.951197
Luo, S., Wang, L., Xiao, Y., Cao, C., Liu, Q., & Zhou, Y. (2023). Single-cell RNA-sequencing integration analysis revealed immune cell heterogeneity in five human autoimmune diseases. BIO Integration, 4, 145.
Marques-Aleixo, I., Beleza, J., Sampaio, A., et al. (2021). Preventive and therapeutic potential of physical exercise in neurodegenerative diseases. Antioxidants & Redox Signaling, 34(9), 674–693. https://doi.org/10.1089/ars.2020.8114
Martiniakova, M., Biro, R., Penzes, N., et al. (2024). Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target. International Journal of Molecular Sciences, 25(9), 4827. https://doi.org/10.3390/ijms25094827
Maryanovich, M., Takeishi, S., & Frenette, P. S. (2018). Neural regulation of bone and bone marrow. Cold Spring Harbor Perspectives in Medicine, 8, a031344. https://doi.org/10.1101/cshperspect.a031344
Merchant, R. M., Topjian, A. A., Panchal, A. R., Cheng, A., Aziz, K., Berg, K. M., Lavonas, E. J., & Magid, D. J. (2020). Part 1: Executive summary: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(Suppl. 2), S337–S357. https://doi.org/10.1161/CIR.0000000000000918
Moon, H. J., Shin, Y. J., & Cho, Y. S. (2022). Identification of out-of-hospital cardiac arrest clusters using unsupervised learning. American Journal of Emergency Medicine, 62, 41–48. https://doi.org/10.1016/j.ajem.2022.09.035
Müller, M. P., Jonsson, M., Böttiger, B. W., & Rott, N. (2023). Telephone cardiopulmonary resuscitation, first responder systems, cardiac arrest centers, and global campaigns to save lives. Current Opinion in Critical Care, 29, 621–627. https://doi.org/10.1097/MCC.0000000000001112
Murphy, A. C., Muldoon, S. F., Baker, D., et al. (2018). Structure, function, and control of the human musculoskeletal network. PLoS Biology, 16, e2002811. https://doi.org/10.1371/journal.pbio.2002811
Nakamura, M., Imaoka, M., & Takeda, M. (2021). Interaction of bone and brain: Osteocalcin and cognition. International Journal of Neuroscience, 131, 1115–1123.
Narayan, S. M., Wang, P. J., & Daubert, J. P. (2019). New concepts in sudden cardiac arrest to address an intractable epidemic. Journal of the American College of Cardiology, 73, 70–88. https://doi.org/10.1016/j.jacc.2018.09.083
Nazzal, M. K., Morris, A. J., Parker, R. S., et al. (2024). Do not lose your nerve, be callus: Insights into neural regulation of fracture healing. Current Osteoporosis Reports, 22, 182–192. https://doi.org/10.1007/s11914-024-00823-1
Negri, S., Samuel, T. J., & Lee, S. (2021). The potential role of exercise training and mechanical loading on bone-associated skeletal nerves. Journal of Bone Metabolism, 28(4), 267–277. https://doi.org/10.11005/jbm.2021.28.4.267
Nishiyama, C., Kiguchi, T., Okubo, M., Alihodžic, H., Al-Araji, R., Baldi, E., Beganton, F., Booth, S., Bray, J., Christensen, E., et al. (2023). Three-year trends in out-of-hospital cardiac arrest across the world: Second report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation, 186, 109757. https://doi.org/10.1016/j.resuscitation.2023.109757
Nordseth, T., Eftestøl, T., Aramendi, E., Kvaløy, J. T., & Skogvoll, E. (2024). Extracting physiologic and clinical data from defibrillators for research purposes to improve treatment for patients in cardiac arrest. Resuscitation Plus, 18, 100611. https://doi.org/10.1016/j.resplu.2024.100611
Ogawara, T., Usui, A., Homma, N., & Funayama, M. (2023). Diagnosing drowning in postmortem CT images using artificial intelligence. Tohoku Journal of Experimental Medicine, 259, 65–75. https://doi.org/10.1620/tjem.2022.J097
Panchal, A. R., Bartos, J. A., Cabañas, J. G., Donnino, M. W., Drennan, I. R., Hirsch, K. G., Kudenchuk, P. J., Kurz, M. C., Lavonas, E. J., & Morley, P. T. (2020). Part 3: Adult basic and advanced life support: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(Suppl. 2), S366–S468.
Park, D., Kim, D. Y., Byun, M. R., et al. (2022). Undercarboxylated, but not carboxylated, osteocalcin suppresses TNF-α–induced inflammatory signaling pathway in myoblasts. Journal of the Endocrine Society, 6, bvac084. https://doi.org/10.1210/jendso/bvac084
Park, S., Yoon, H., Kang, S. Y., Jo, I. J., Heo, S., Chang, H., Parc, J. E., Lee, G., Kim, T., Hwang, S. Y., et al. (2024). Artificial intelligence-based evaluation of carotid artery compressibility via point-of-care ultrasound in determining return of spontaneous circulation during cardiopulmonary resuscitation. Resuscitation, 202, 110302. https://doi.org/10.1016/j.resuscitation.2024.110302
Pesce, M., La Fratta, I., Paolucci, T., et al. (2021). From exercise to cognitive performance: Role of irisin. Applied Sciences, 11, 7120. https://doi.org/10.3390/app11157120
Piliuk, K., & Tomforde, S. (2023). Artificial intelligence in emergency medicine: A systematic literature review. International Journal of Medical Informatics, 180, 105274. https://doi.org/10.1016/j.ijmedinf.2023.105274
Plodr, M., & Chalusova, E. (2024). Current trends in the management of out-of-hospital cardiac arrest (OHCA). Biomedical Papers of the Medical Faculty of Palacky University, 168, 105–116. https://doi.org/10.5507/bp.2024.006
Qi, J. Y., Yang, L. K., Wang, X. S., et al. (2022). Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Research Bulletin, 188, 11–20. https://doi.org/10.1016/j.brainresbull.2022.05.006
Rai, M., & Demontis, F. (2022). Muscle-to-brain signaling via myokines and myometabolites. Brain Plasticity, 8, 43–63. https://doi.org/10.3233/BPL-210123
Rajagopalan, B., Shen, W. K., Patton, K., et al. (2022). Surviving sudden cardiac arrest—Successes, challenges, and opportunities. Journal of Interventional Cardiac Electrophysiology, 64, 567–571. https://doi.org/10.1007/s10840-021-00969-1
Rawshani, A., Hessulf, F., Deminger, J., Sultanian, P., Gupta, V., Lundgren, P., Mohammed, M., Alchay, M. A., Dioland, T., Gryska, E., et al. (2024). Prediction of neurologic outcome after out-of-hospital cardiac arrest: An interpretable approach with machine learning. Resuscitation, 202, 110359. https://doi.org/10.1016/j.resuscitation.2024.110359
Rietchel, L. J., Belfiore, E. B. R., Sigala, M. E. M., & D’Empaire, P. P. (2024). Point-of-care ultrasound in trauma and the evolving role of the anesthesiologist: A narrative review of emerging topic trends. Current Anesthesiology Reports, 15, 2. https://doi.org/10.1007/s40140-024-00682-5
Scheiblich, H., Trombly, M., Ramirez, A., & Heneka, M. T. (2020). Neuroimmune connections in aging and neurodegenerative diseases. Trends in Immunology, 41, 300–312. https://doi.org/10.1016/j.it.2020.02.002
Schnaubelt, S., Monsieurs, K. G., Fijacko, N., Veigl, C., Al-Hilali, Z., Atiq, H., Bigham, B. L., Eastwood, K., Ko, Y. C., Matsuyama, T., et al. (2024). International facets of the “chain of survival” for out-of-hospital and in-hospital cardiac arrest: A scoping review. Resuscitation Plus, 19, 100689. https://doi.org/10.1016/j.resplu.2024.100689
Schurman, C. A., Burton, J. B., Rose, J., et al. (2023). Molecular and cellular crosstalk between bone and brain during aging and disease. Journal of Bone Metabolism, 30, 1–29.
Scquizzato, T., Gamberini, L., & Semeraro, F. (2022). How technology can save lives in cardiac arrest. Current Opinion in Critical Care, 28, 250–255. https://doi.org/10.1097/MCC.0000000000000930
Semeraro, F., Schnaubelt, S., Malta Hansen, C., et al. (2024). Cardiac arrest and cardiopulmonary resuscitation in the next decade: Predicting and shaping the impact of technological innovations. Resuscitation, 200, 110250. https://doi.org/10.1016/j.resuscitation.2024.110250
Shao, Y., Yang, Z., Chen, W., & Zhang, Y. (2024). Implementing an intelligent diagnosis and treatment system for in-hospital cardiac arrest in the Utstein style: A multi-center case study. Journal of Translational Medicine, 22, 996. https://doi.org/10.1186/s12967-024-05792-6
Shen, C. P., Freed, B. C., Walter, D. P., Perry, J. C., Barakat, A. F., Elashery, A. R. A., Shah, K. S., Kutty, S., McGillion, M., & Ng, F. S. (2023). Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator. Journal of the American Heart Association, 12, e026974. https://doi.org/10.1161/JAHA.122.026974
Shen, Y., Xu, Y., & Bao, Y. (2020). Interaction among skeleton, body fat and cardiovascular diseases mediated by osteocalcin. Obesity Medicine, 17, 100184. https://doi.org/10.1016/j.obmed.2020.100184
Shi, H., & Chen, M. (2024). The brain–bone axis: Unraveling the complex interplay between the central nervous system and skeletal metabolism. European Journal of Medical Research, 29, 317. https://doi.org/10.1186/s40001-024-01738-1
Shin, S. J., Bae, H. S., Moon, H. J., Kim, G. W., Cho, Y. S., Lee, D. W., Jeong, D. K., Kim, H. J., & Lee, H. J. (2023). Evaluation of optimal scene time interval for out-of-hospital cardiac arrest using a deep neural network. American Journal of Emergency Medicine, 63, 29–37. https://doi.org/10.1016/j.ajem.2022.10.011
Thorn, S., Güting, H., Maegele, M., Gruen, R. L., & Mitra, B. (2019). Early identification of acute traumatic coagulopathy using clinical prediction tools: A systematic review. Medicina, 55, 653. https://doi.org/10.3390/medicina55100653
Trindade, L. P., Prieto, A. V., Costa, R. M. D., et al. (2023). Correlation between sarcopenia, risk of falls and mortality in the elderly: A systematic review and meta-analysis. Arquivos de Ciências da Saúde da UNIPAR, 27, 5704–5721.
Urquiaga, M., & Saag, K. G. (2022). Risk for osteoporosis and fracture with glucocorticoids. Best Practice & Research Clinical Rheumatology, 36, 101793. https://doi.org/10.1016/j.berh.2022.101793
Wang, J. S., Mazur, C. M., & Wein, M. N. (2021). Sclerostin and osteocalcin: Candidate bone-produced hormones. Frontiers in Endocrinology, 12, 584147. https://doi.org/10.3389/fendo.2021.584147
Xu, J., Zhang, Z., Zhao, J., et al. (2022). Interaction between the nervous and skeletal systems. Frontiers in Cell and Developmental Biology, 10, 976736. https://doi.org/10.3389/fcell.2022.976736
Xu, Y., Liu, X., Tsuji, K., Hamaoka, T., & Tabata, I. (2024). Oxygen uptake during the last bouts of exercise incorporated into high-intensity intermittent cross-exercise exceeds VO2max. Sports Medicine and Health Science, 6, 63–69.
Yu, X., & Pan, S. (2024). Role and mechanism of cGAS-STING pathway in the cardiovascular system. Reviews in Cardiovascular Medicine, 25, 135. https://doi.org/10.31083/j.rcm2504135
Zhang, F., & Zhang, W. (2024). Research progress in Alzheimer’s disease and the bone–brain axis. Ageing Research Reviews, 98, 102341. https://doi.org/10.1016/j.arr.2024.102341
Zhao, Z., Yan, K., Guan, Q., Guo, Q., & Zhao, C. (2024). Mechanism and physical activities in bone–skeletal muscle crosstalk. Frontiers in Endocrinology, 14, 1287972. https://doi.org/10.3389/fendo.2023.1287972
Zicari, R. V., Brusseau, J., Blomberg, S. N., Christensen, H. C., Coffee, M., Ganapini, M. B., Gerke, S., Gilbert, T., Hikman, E., & Hildt, E. (2021). On assessing trustworthy AI in healthcare: Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Frontiers in Human Dynamics, 3, 673104. https://doi.org/10.3389/fhumd.2021.673104