References
Akselrod-Ballin, A., Chorev, M., Shoshan, Y., Spiro, A., Hazan, A., Melamed, R., ... & Ben-Ari, R. (2019). Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology, 292(2), 331–342. https://doi.org/10.1148/radiol.2019182716
Anderson, J. L., Horne, B. D., Stevens, S. M., Grove, A. S., Barton, S., Nicholas, Z. P., ... & Carlquist, J. F. (2007). Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation, 116(22), 2563–2570. https://doi.org/10.1161/CIRCULATIONAHA.107.736171
Arnar, D. O., & Palsson, R. (2019). Precision medicine and advancing clinical care: Insights from Iceland. JAMA Internal Medicine, 179(2), 139–140. https://doi.org/10.1001/jamainternmed.2018.5516
Aronson, S. J., & Rehm, H. L. (2015). Building the foundation for genomics in precision medicine. Nature, 526, 336–342. https://doi.org/10.1038/nature15816
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549, 195–202. https://doi.org/10.1038/nature23474
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., ... & Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203–209. https://doi.org/10.1038/s41586-018-0579-z
Caudle, K. E., Dunnenberger, H. M., Freimuth, R. R., Peterson, J. F., Burlison, J. D., Whirl-Carrillo, M., ... & Relling, M. V. (2014). Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Current Drug Metabolism, 15(2), 209–217. https://doi.org/10.2174/1389200215666140421112855
Dankwa-Mullan I, Scheufele EL, Matheny M, Quintana Y, Chapman W, Jackson G, et al.. A proposed framework on integrating health equity and racial justice into the artificial intelligence development lifecycle. J Health Care Poor Underserved. 2021;32(2):300–317
Davenport, H. T., Glaser, J., & Glover, W. (2018). Using AI to improve electronic health records. Harvard Business Review, 12, 1–6.
Davenport, T., & Kalakota, R. (2019). The Potential for Artificial Intelligence in Healthcare Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Friedman, C. P. (2009). A “fundamental theorem” of biomedical informatics. Journal of the American Medical Informatics Association, 16(2), 169–170. https://doi.org/10.1197/jamia.M3092
Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69S, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011
Hartmaier, R. J., Albacker, L. A., Chmielecki, J., Bailey, M., He, J., Goldberg, M. E., ... & Ross, J. S. (2017). High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Research, 77(9), 2464–2475. https://doi.org/10.1158/0008-5472.CAN-16-2478
Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. https://doi.org/10.1097/SLA.0000000000002693
IBM. (2015). IBM and partners to transform personal health with Watson and open cloud. https://www-03.ibm.com/press/us/en/pressrelease/46580.wss
Jorgensen, A. L., Al-Zubiedi, S., Zhang, J. E., Patel, J. P., Toh, C. H., & Pirmohamed, M. (2019). Implementation of genotype-guided dosing of warfarin with point-of-care genetic testing in three UK clinics: A matched cohort study. BMC Medicine, 17(1), 76. https://doi.org/10.1186/s12916-019-1314-4
Joudaki, H., Rashidian, A., Minaei-Bidgoli, B., Mahmoodi, M., Geraili, B., Nasiri, M., & Arab, M. (2015). Improving fraud and abuse detection in general physician claims: A data mining study. International Journal of Health Policy and Management, 5(3), 165–172. https://doi.org/10.15171/ijhpm.2015.210
Kelly, J. E., & Hamm, S. (2013). Intelligent machines: IBM’s Watson and the era of cognitive computing. Columbia Business School Publishing.
Lin, S. Y., Mahoney, M. R., & Sinsky, C. A. (2019). Ten ways artificial intelligence will transform primary care. Journal of General Internal Medicine, 34(8), 1626–1630. https://doi.org/10.1007/s11606-019-05035-1
Matheny, M. E., Whicher, D., & Thadaney Israni, S. (Eds.). (2019). Artificial intelligence in health care: The hope, the hype, the promise, the peril. National Academy of Medicine.
Mayo, R. C., & Leung, J. W. T. (2018). Artificial intelligence and deep learning—Radiology’s next frontier? Clinical Imaging, 49, 87–88. https://doi.org/10.1016/j.clinimag.2017.11.007
McGinnis, J. M., Williams-Russo, P., & Knickman, J. R. (2002). The Case for More Active Policy Attention to Health Promotion. Health Affairs, 21(2), 78–93. https://doi.org/10.1377/hlthaff.21.2.78
McNamara, D. M., Birnbaum, B., Sanders, T., & Jacobson, K. (2019). Differential impact of cognitive computing augmented by real world evidence on novice and expert oncologists. Cancer Medicine, 8(15), 6578–6584. https://doi.org/10.1002/cam4.2534
Mennella, Ciro, Maniscalco, Umberto,De Pietro, Giuseppe,Esposito, Massimo,2024,Ethical and regulatory challenges of AI technologies in healthcare: A narrative review,Elsevier,10:4,2405-8440, doi: 10.1016/j.heliyon.2024.e26297
Miller, D. D., & Brown, E. W. (2019). How Cognitive Machines Can Augment Medical Imaging. AJR American Journal of Roentgenology, 212(1), 9–14. https://doi.org/10.2214/AJR.18.19962
Nagai, A., Hirata, M., Kamatani, Y., Muto, K., Matsuda, K., & Kubo, M. (2017). Overview of the BioBank Japan Project: Study design and profile. Journal of Epidemiology, 27(3S), S2–S8. https://doi.org/10.1016/j.je.2016.12.005
National Research Council. (2011). Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease. The National Academies Press.
Patel, N. M., Michelini, V. V., Snell, J. M., Balu, S., Hoyle, A. P., Parker, J. S., ... & Hartman, A. R. (2018). Enhancing next-generation sequencing-guided cancer care through cognitive computing. The Oncologist, 23(2), 179–185. https://doi.org/10.1634/theoncologist.2017-0331
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1, 18. https://doi.org/10.1038/s41746-018-0029-1
Sadilek, A., Kautz, H., & Silenzio, V. (2018). Machine-learned epidemiology: Real-time detection of foodborne illness at scale. NPJ Digital Medicine, 1, 36. https://doi.org/10.1038/s41746-018-0045-1
Snowdon, J. L., Hauck, T. S., Kuhn, K. A., & Schnall, R. (2020). Empowering caseworkers to better serve the most vulnerable with a cloud-based care management solution. Applied Clinical Informatics, 11(4), 617–621. https://doi.org/10.1055/s-0040-1717094
Stark, Z., Dolman, L., Manolio, T. A., Ozenberger, B., Hill, S. L., Caulfied, M. J., ... & North, K. N. (2019). Australian genomics: A federated model for integrating genomics into healthcare. American Journal of Human Genetics, 105(1), 7–14. https://doi.org/10.1016/j.ajhg.2019.05.004
Topol, E. J. (2019). Deep medicine: How artificial intelligence can make healthcare human again—basic Books.
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) Applications for the COVID-19 Pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012
van der Schee, M. P., Palapattu, G. S., & Baker, L. H. (2018). Breath biopsy for early detection and precision medicine in cancer. Ecancermedicalscience, 12, ed84. https://doi.org/10.3332/ecancer.2018.ed84
Wang, F., & Preininger, A. (2019). AI in health: State of the art, challenges, and future directions. Yearbook of Medical Informatics, 28(1), 16–26. https://doi.org/10.1055/s-0039-1677908
Ziegelstein, R. C. (2017). Personomics and precision medicine. Transactions of the American Clinical and Climatological Association, 128, 160–168.