Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
REVIEWS   (Open Access)

Artificial Intelligence in Drug Development and Delivery: Opportunities, Challenges, and Future Directions

Rabi Sankar Mondal1*, Lamia Akter2, Md Nazmul Alam Bhuiyan1

+ Author Affiliations

Integrative Biomedical Research (Journal of Angiotherapy) 8 (8) 1-8 https://doi.org/10.25163/angiotherapy.8810326

Submitted: 23 June 2024 Revised: 07 August 2024  Published: 09 August 2024 


Abstract

Artificial Intelligence (AI) is making big waves in the world of drug development and delivery. It is changing the way we approach pharmaceuticals by increasing efficiency, precision, and personalization throughout the entire process. This discussion explores how AI technologies are enhancing the journey from drug discovery to patient care, making clinical trials more effective, and facilitating the creation of tailored treatments that meet individual patient needs. By analyzing vast amounts of biomedical data, AI can identify promising drug-target interactions, pinpoint the most suitable patient groups for specific medications, and tailor treatment plans to each person’s unique genetic and health characteristics, which is especially beneficial for complex conditions like cancer. Innovative drug delivery systems that utilize AI can adjust medication administration in real-time, making therapies more effective. Challenges such as data quality issues, potential algorithmic biases, lack of transparency, and the complex regulatory landscape can slow things down. Additionally, protecting patient privacy and navigating the ethical implications of AI, along with ensuring the models can be easily understood, adds more layers of complexity. There are also practical difficulties in integrating these advanced systems into the fragmented healthcare landscape, along with the need for ongoing monitoring of AI models to ensure their continued effectiveness and reliability. It is essential to develop regulatory frameworks that prioritize transparency and the ethical application of AI, enhance our data management systems, and foster collaboration across various fields. By tackling these challenges, we can pave the way for innovation while ensuring patient safety and fairness.

Keywords: Artificial Intelligence, Drug Development, Personalized Medicine, Clinical Trials, Smart Drug Delivery

References


Bachas, S., Rakocevic, G., Spencer, D., Sastry, A. V., Haile, R., & Sutton, J. M. (2022). Artificial intelligence predictions of binding affinity and naturalness enable antibody optimization. bioRxiv 2022, 504181. doi:10.1101/2022.08.16.504181

Bender, A., and Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Disc Today 26 (2), 511–524. doi:10.1016/j.drudis.2020.12.009

Bhattamisra, S.K., Banerjee, P., Gupta, P., Mayuren, J., Patra, S., & Candasamy, M. (2023). Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing, 7(1), 10. https://doi.org/10.3390/bdcc7010010

Biswas, N., & Chakrabarti, S. (2020). Artificial intelligence (AI)-based systems biology approaches in the analysis of multi-omics data for cancer. Front. Oncol. 10, 588221. doi:10.3389/fonc.2020.588221

Blackburn-Owkin, A. (2022). Melloddy final results. Available at: https://www.melloddy.eu/y3announcement (Accessed October 17, 2022).

Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59 (3), 1096–1108. doi:10.1021/acs.jcim.8b00839

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. J. Art. Intell. Res. 16, 321–357. doi:10.1613/jair.953

David, L., Thakkar, A., Mercado, R., & Engkvist, O. (2020). Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform. 12, 56. doi:10.1186/s13321-020-00460-5

Gershell, L. J., & Atkins, J. H. (2003). A brief history of novel drug discovery technologies. Nat. Rev.. Drug Disc. 2, 321–327. doi:10.1038/nrd1064

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers 2021, 1315–1360. doi:10.1007/s11030-021-10217-3

Hessler, G., & Baringhaus, K. H. (2021). Artificial intelligence in drug design. Molecules 23, 2520. doi:10.3390/molecules23102520

Irwin, B. W. J., Whitehead, T. M., Rowland, S., Mahmoud, S. Y., Conduit, G. J., & Segall, M. D. (2021). Deep imputation of large-scale drug discovery data. Appl. AI Lett. 2, e31. doi:10.1002/ail2.31

Jaganathan, K., Panagiotopoulou, S. K., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., et al. (2019). Predicting splicing from primary sequence with deep learning. Cell 176 (3), 535–548.e24. doi:10.1016/j.cell.2018.12.015

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. doi:10.1038/s41586-021-03819-2

Kumar, M., Nguyen, T. P. N., Kaur, J., Singh, T. G., Soni, D., Singh, R., et al. (2023). Opportunities and Challenges in the Application of Artificial Intelligence in Pharmacology. Pharmacol. Rep.. 75, 3–18. doi:10.1007/s43440-022-00445-1

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., et al. (2022). Language models of protein sequences, on the scale of evolution, enable accurate structure prediction. bioRxiv 2022, 500902. doi:10.1101/2022.07.20.500902

Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., et al. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature 486 (7403), 361–367. doi:10.1038/nature11159

O’Leary, L. (2022). How IBM’s Watson went from the future of healthcare to being sold off for parts. Available at: https://slate.com/technology/2022/01/ibm-watson-health-failure-artificial-intelligence.html (Accessed October 11, 2022).

Pant, S. M., Mukonoweshuro, A., Desai, B., Ramjee, M. K., Selway, C. N., Tarver, G. J., et al. (2018). Design, synthesis, and testing of potent, selective hepsin inhibitors via application of an automated closed-loop optimization platform. J. Med. Chem. 61 (10), 4335–4347. doi:10.1021/acs.jmedchem.7b01698

Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discov. Today, 26, 80–93. doi:10.1016/j.drudis.2020.10.010

Pina, A. S., Hussain, A., & Roque, A. C. A. (2009). A historical overview of drug discovery: Ligand-macromolecular interactions in drug discovery: Methods and protocols. Methods Mol. Biol. 572, 3–12. doi:10.1007/978-1-60761-244-5_1

Raleigh, N. (2022). The future of AI drug discovery and development in immunology and GPCR research. Available at : https://pharmaphorum.com/digital/the-future-of-ai-drug-discovery-development-in-immunology-and-gpcr-research/(Accessed October 11, 2022).

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., et al. (2019). Evaluating protein transfer learning with TAPE. Adv. Neural Inf. Process Syst. 32, 9689–9701.

Renaud, N., & Wang, Y. (2021). Artificial Intelligence as an Enabler for Phenotypic Drug Discovery. Phenotypic Drug Discov. 77, 104–117. doi:10.1039/9781839160721-00104

Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf. Model 50 (5), 742–754. doi:10.1021/ci100050t

Scannell, J., & Bosley, J. (2016). When quality beats quantity: Decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 11 (2), e0147215. doi:10.1371/journal.pone.0147215

Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev.. Drug Disc. 11, 191–200. doi:10.1038/nrd3681

Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in underserved patient populations. Nat. Med.. 27, 2176–2182. doi:10.1038/s41591-021-01595-0

Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328

Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., Tufael (2018). "Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions", Journal of Primeasia, 1.1(1),1-7,10163

Sharir, O., Peleg, B., and Shoham, Y. (2020). The Cost of Training NLP Models: A Concise Overview. arXiv [Preprint]. Available at: https://arxiv.org/abs/2004.08900 (Accessed February 5, 2023).

Sprang, M., Andrade-Navarro, M. A., & Fontain, J-F. (2022). Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality. BMC Bioinform 23, 279. doi:10.1186/s12859-022-04775-y

Tufael, Atiqur Rahman Sunny et al. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare, 4(1), 1-5, 9798

Tufael & Atikur Rahman Sunnay (2022). Transforming Healthcare with Artificial Intelligence: Innovations, Applications, and Future Challenges, Journal of Primeasia, 3(1), 1–6, 9802

United States Government Accountability Office (2019). Artificial intelligence in health care: Benefits and challenges of machine learning in drug development. Washington, DC: United States Government Accountability Office.

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al. (2019). Applications of machine learning in drug discovery and development. Nat. Rev.. Drug Disc 18, 463–477. doi:10.1038/s41573-019-0024-5

 Walters, W. P., & Murcko, M. (2020). Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145. doi:10.1038/s41587-020-0418-2

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018. doi:10.1038/sdata.2016.18

Wills, T. (2021). Assessing structural novelty of the first AI-designed drug candidates to go into human clinical trials. Available at: https://www.cas.org/resources/blog/ai-drug-candidates (Accessed October 11, 2022).

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al. (2018). MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 9, 513–530. doi:10.1039/c7sc02664a

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
40
View
0
Share