References
Bachas, S., Rakocevic, G., Spencer, D., Sastry, A. V., Haile, R., & Sutton, J. M. (2022). Artificial intelligence predictions of binding affinity and naturalness enable antibody optimization. bioRxiv 2022, 504181. doi:10.1101/2022.08.16.504181
Bender, A., and Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Disc Today 26 (2), 511–524. doi:10.1016/j.drudis.2020.12.009
Bhattamisra, S.K., Banerjee, P., Gupta, P., Mayuren, J., Patra, S., & Candasamy, M. (2023). Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing, 7(1), 10. https://doi.org/10.3390/bdcc7010010
Biswas, N., & Chakrabarti, S. (2020). Artificial intelligence (AI)-based systems biology approaches in the analysis of multi-omics data for cancer. Front. Oncol. 10, 588221. doi:10.3389/fonc.2020.588221
Blackburn-Owkin, A. (2022). Melloddy final results. Available at: https://www.melloddy.eu/y3announcement (Accessed October 17, 2022).
Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59 (3), 1096–1108. doi:10.1021/acs.jcim.8b00839
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. J. Art. Intell. Res. 16, 321–357. doi:10.1613/jair.953
David, L., Thakkar, A., Mercado, R., & Engkvist, O. (2020). Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform. 12, 56. doi:10.1186/s13321-020-00460-5
Gershell, L. J., & Atkins, J. H. (2003). A brief history of novel drug discovery technologies. Nat. Rev.. Drug Disc. 2, 321–327. doi:10.1038/nrd1064
Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers 2021, 1315–1360. doi:10.1007/s11030-021-10217-3
Hessler, G., & Baringhaus, K. H. (2021). Artificial intelligence in drug design. Molecules 23, 2520. doi:10.3390/molecules23102520
Irwin, B. W. J., Whitehead, T. M., Rowland, S., Mahmoud, S. Y., Conduit, G. J., & Segall, M. D. (2021). Deep imputation of large-scale drug discovery data. Appl. AI Lett. 2, e31. doi:10.1002/ail2.31
Jaganathan, K., Panagiotopoulou, S. K., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., et al. (2019). Predicting splicing from primary sequence with deep learning. Cell 176 (3), 535–548.e24. doi:10.1016/j.cell.2018.12.015
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. doi:10.1038/s41586-021-03819-2
Kumar, M., Nguyen, T. P. N., Kaur, J., Singh, T. G., Soni, D., Singh, R., et al. (2023). Opportunities and Challenges in the Application of Artificial Intelligence in Pharmacology. Pharmacol. Rep.. 75, 3–18. doi:10.1007/s43440-022-00445-1
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., et al. (2022). Language models of protein sequences, on the scale of evolution, enable accurate structure prediction. bioRxiv 2022, 500902. doi:10.1101/2022.07.20.500902
Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., et al. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature 486 (7403), 361–367. doi:10.1038/nature11159
O’Leary, L. (2022). How IBM’s Watson went from the future of healthcare to being sold off for parts. Available at: https://slate.com/technology/2022/01/ibm-watson-health-failure-artificial-intelligence.html (Accessed October 11, 2022).
Pant, S. M., Mukonoweshuro, A., Desai, B., Ramjee, M. K., Selway, C. N., Tarver, G. J., et al. (2018). Design, synthesis, and testing of potent, selective hepsin inhibitors via application of an automated closed-loop optimization platform. J. Med. Chem. 61 (10), 4335–4347. doi:10.1021/acs.jmedchem.7b01698
Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discov. Today, 26, 80–93. doi:10.1016/j.drudis.2020.10.010
Pina, A. S., Hussain, A., & Roque, A. C. A. (2009). A historical overview of drug discovery: Ligand-macromolecular interactions in drug discovery: Methods and protocols. Methods Mol. Biol. 572, 3–12. doi:10.1007/978-1-60761-244-5_1
Raleigh, N. (2022). The future of AI drug discovery and development in immunology and GPCR research. Available at : https://pharmaphorum.com/digital/the-future-of-ai-drug-discovery-development-in-immunology-and-gpcr-research/(Accessed October 11, 2022).
Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., et al. (2019). Evaluating protein transfer learning with TAPE. Adv. Neural Inf. Process Syst. 32, 9689–9701.
Renaud, N., & Wang, Y. (2021). Artificial Intelligence as an Enabler for Phenotypic Drug Discovery. Phenotypic Drug Discov. 77, 104–117. doi:10.1039/9781839160721-00104
Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf. Model 50 (5), 742–754. doi:10.1021/ci100050t
Scannell, J., & Bosley, J. (2016). When quality beats quantity: Decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 11 (2), e0147215. doi:10.1371/journal.pone.0147215
Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev.. Drug Disc. 11, 191–200. doi:10.1038/nrd3681
Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in underserved patient populations. Nat. Med.. 27, 2176–2182. doi:10.1038/s41591-021-01595-0
Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328
Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., Tufael (2018). "Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions", Journal of Primeasia, 1.1(1),1-7,10163
Sharir, O., Peleg, B., and Shoham, Y. (2020). The Cost of Training NLP Models: A Concise Overview. arXiv [Preprint]. Available at: https://arxiv.org/abs/2004.08900 (Accessed February 5, 2023).
Sprang, M., Andrade-Navarro, M. A., & Fontain, J-F. (2022). Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality. BMC Bioinform 23, 279. doi:10.1186/s12859-022-04775-y
Tufael, Atiqur Rahman Sunny et al. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare, 4(1), 1-5, 9798
Tufael & Atikur Rahman Sunnay (2022). Transforming Healthcare with Artificial Intelligence: Innovations, Applications, and Future Challenges, Journal of Primeasia, 3(1), 1–6, 9802
United States Government Accountability Office (2019). Artificial intelligence in health care: Benefits and challenges of machine learning in drug development. Washington, DC: United States Government Accountability Office.
Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al. (2019). Applications of machine learning in drug discovery and development. Nat. Rev.. Drug Disc 18, 463–477. doi:10.1038/s41573-019-0024-5
Walters, W. P., & Murcko, M. (2020). Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145. doi:10.1038/s41587-020-0418-2
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018. doi:10.1038/sdata.2016.18
Wills, T. (2021). Assessing structural novelty of the first AI-designed drug candidates to go into human clinical trials. Available at: https://www.cas.org/resources/blog/ai-drug-candidates (Accessed October 11, 2022).
Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al. (2018). MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 9, 513–530. doi:10.1039/c7sc02664a