Microbial Bioactives

Microbial Bioactives | Online ISSN 2209-2161
279
Citations
152.3k
Views
143
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

Illuminating Biological Dark Matter: Integrating Metagenomics, Synthetic Biology, and AI to Unlock Microbial and Genomic Potential for Therapeutics and Biotechnology

Abstract 1. Introduction 2. Materials and Methods 3. Results 4. Discussion 5. Limitations 6. Conclusion References

Yue Li 1, Shunqi Liu 2 *

+ Author Affiliations

Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110627

Submitted: 13 February 2026 Revised: 01 April 2026  Accepted: 08 April 2026  Published: 10 April 2026 


Abstract

The exploration of microbial and human genomic "dark matter" has transformed biotechnology, shifting the focus from merely reading genetic codes to actively engineering and harnessing them for sustainable solutions and human health. Over 99% of microorganisms remain uncultured, representing vast reservoirs of novel natural products (NPs) and enzymes that can be accessed through culture-independent metagenomics. Function-based, sequencing-based, and single-cell metagenomic approaches enable the discovery of bioactive compounds such as turbomycins, fasamycins, and cadasides, which hold promise against multidrug-resistant pathogens. Parallel advances in synthetic biology have established robust chassis organisms, including Saccharomyces cerevisiae and fast-growing cyanobacteria, optimized for industrial production of biofuels, chemicals, and bioplastics. Artificial intelligence (AI) and machine learning further refine these platforms, providing predictive models for bioprocess optimization, biomass accumulation, and metabolic engineering. In clinical contexts, proteogenomics integrates DNA, RNA, and protein-level data to identify therapeutic targets and overcome drug resistance in diseases such as colorectal cancer. The ongoing evolution of HIV-1 illustrates the challenge of viral diversity, highlighting the role of next-generation sequencing, CRISPR-based gene editing, and biosensor-enabled surveillance in precision medicine. Gut microbiota manipulation, through fecal microbiota transplantation and engineered probiotics, represents a frontier for addressing systemic and metabolic disorders. This systematic review synthesizes quantitative data from these diverse fields, emphasizing the synergy between metagenomics, synthetic biology, and AI, and provides a meta-analytic framework to evaluate their translational potential for therapeutics, industrial biotechnology, and personalized medicine.

Keywords: Metagenomics; Synthetic Biology; Artificial Intelligence; Microbial Dark Matter; Proteogenomics; HIV-1; Gut Microbiota; Natural Products

References

Alam, K., Abbasi, M. N., Hao, J., Zhang, Y., & Li, A. (2021). Strategies for natural products discovery from uncultured microorganisms. Molecules, 26(10), 2977. https://doi.org/10.3390/molecules26102977

Alexiev, I., & Dimitrova, R. (2025). The origins and genetic diversity of HIV-1: Evolutionary insights and global health perspectives. International Journal of Molecular Sciences, 26(22), 10909. https://doi.org/10.3390/ijms262210909

Blank-Landeshammer, B., Richard, V. R., Mitsa, G., Marques, M., LeBlanc, A., Kollipara, L., … Borchers, C. H. (2019). Proteogenomics of colorectal cancer liver metastases: Complementing precision oncology with phenotypic data. Cancers, 11(12), 1907. https://doi.org/10.3390/cancers11121907

Dixon, T. A., & Pretorius, I. S. (2020). Drawing on the past to shape the future of synthetic yeast research. International Journal of Molecular Sciences, 21(19), 7156. https://doi.org/10.3390/ijms21197156

Felley-Bosco, E. (2023). Exploring the expression of the "dark matter" of the genome in mesothelioma for potentially predictive biomarkers for prognosis and immunotherapy. Cancers, 15(11), 2969. https://doi.org/10.3390/cancers15112969

Fu, J., Gao, Q., & Li, S. (2023). Application of intelligent medical sensing technology. Biosensors, 13(8), 812. https://doi.org/10.3390/bios13080812

Imamoglu, E. (2024). Artificial intelligence and/or machine learning algorithms in microalgae bioprocesses. Bioengineering, 11(11), 1143. https://doi.org/10.3390/bioengineering11111143

Liu, X., Tang, K., & Hu, J. (2024). Application of cyanobacteria as chassis cells in synthetic biology. Microorganisms, 12(7), 1375. https://doi.org/10.3390/microorganisms12071375

Quaranta, G., Guarnaccia, A., Fancello, G., Agrillo, C., Iannarelli, F., Sanguinetti, M., & Masucci, L. (2022). Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms, 10(12), 2424. https://doi.org/10.3390/microorganisms10122424

Scott, T. A., & Piel, J. (2019). The hidden enzymology of bacterial natural product biosynthesis. Nature Reviews Chemistry, 3(7), 404–425. https://doi.org/10.1038/s41570-019-0107-1

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., … Nelson, W. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66–74. https://doi.org/10.1126/science.1093857

Gillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., … Handelsman, J. (2002). Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Applied and Environmental Microbiology, 68(9), 4301–4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002

Feng, Z., Chakraborty, D., Dewell, S. B., Reddy, B. V. B., & Brady, S. F. (2012). Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. Journal of the American Chemical Society, 134(6), 2981–2987. https://doi.org/10.1021/ja207662w

Oruganti, R. K., Biji, A. P., Lanuyanger, T., Show, P. L., & Bhattacharyya, D. (2023). AI and ML tools for high-performance microalgal wastewater treatment. Science of The Total Environment, 876, 162797. https://doi.org/10.1016/j.scitotenv.2023.162797

Kavitha, S., Ravi, Y. K., Kumar, G., & Nandabalan, Y. K. (2024). Microalgal biorefineries: Advancement in machine learning tools. Journal of Environmental Management, 353, 120135. https://doi.org/10.1016/j.jenvman.2024.120135

Wu, C., Shang, Z., Lemetre, C., Ternei, M. A., & Brady, S. F. (2019). Cadasides, calcium-dependent acidic lipopeptides from the soil metagenome that are active against multidrug-resistant bacteria. Journal of the American Chemical Society, 141(9), 3910–3919. https://doi.org/10.1021/jacs.8b12087

Reddy, B. V. B., Milshteyn, A., Charlop-Powers, Z., & Brady, S. F. (2014). eSNaPD: A versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chemistry & Biology, 21(8), 1023–1033. https://doi.org/10.1016/j.chembiol.2014.06.007

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., … Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431–437. https://doi.org/10.1038/nature12352

Piel, J. (2002). A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proceedings of the National Academy of Sciences, 99(22), 14002–14007. https://doi.org/10.1073/pnas.222481399

Hildebrand, M., Waggoner, L. E., Liu, H., Sudek, S., Allen, S., Anderson, C., … Haygood, M. (2004). bryA: An unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chemistry & Biology, 11(11), 1543–1552. https://doi.org/10.1016/j.chembiol.2004.08.018

Handelsman, J. (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004

Mertins, P., Mani, D. R., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., … Carr, S. A. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62. https://doi.org/10.1038/nature18003

Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., … Tabb, D. L. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature, 513(7518), 382–387. https://doi.org/10.1038/nature13438

Huang, K. L., Li, S., Mertins, P., Cao, S., Gunawardena, H. P., Ruggles, K. V., … Ding, L. (2017). Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 8(1), 14864. https://doi.org/10.1038/ncomms14864

Luan, G., Zhang, S., & Lu, X. (2020). Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Current Opinion in Biotechnology, 62, 1–6. https://doi.org/10.1016/j.copbio.2019.07.004

Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., … Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 5(1), 8132. https://doi.org/10.1038/srep08132


Article metrics
View details
0
Downloads
0
Citations
11
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
11
View
0
Share