Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
RESEARCH ARTICLE   (Open Access)

Structural and Pharmacological Insights into Withaferin a Binding to Mutant p53 (R248Q): Multi-Faceted Inhibitor in Cancer Treatment

Most Farhana Akter1*, Md. Robiul Islam1, Amena Khatun Manica2, Md Abu Bakar Siddique3, Tufael4

+ Author Affiliations

Journal of Angiotherapy 6 (2) 1-11 https://doi.org/10.25163/angiotherapy.6210432

Submitted: 22 August 2022 Revised: 07 October 2022  Published: 12 October 2022 


Abstract

Background: Mutations in the TP53 gene, particularly at codon 248 (R248Q), are frequently observed in aggressive tumors and correlate with poor prognosis. Therapeutic reactivation of mutant p53 remains a significant challenge in oncology.

Aim: This study aimed to evaluate and compare the binding behavior, drug-likeness, and toxicity profiles of APR-246-a clinically studied p53 reactivator-and Withaferin A-a natural compound with reported anticancer activity-against the R248Q mutant of p53.

Methods: The wild-type p53 structure (PDB ID: 2OCJ) was modified in silico to generate the R248Q mutant. Ligands were prepared and docked using AutoDock Vina via PyRx, targeting the DNA-binding domain. Interactions were visualized through BIOVIA Discovery Studio. ADMET properties and pharmacokinetics were predicted using SwissADME, while toxicity was assessed via the ProTox-II platform. Protein flexibility was evaluated using Normal Mode Analysis (NMA), comparing predicted B-factors with crystallographic data.

Results: Withaferin A demonstrated a stronger binding affinity and more extensive hydrogen bonding near the mutation site than APR-246. Both compounds satisfied Lipinski’s Rule and showed favorable gastrointestinal absorption. However, APR-246 displayed higher water solubility, while Withaferin A exhibited greater lipophilicity and lower predicted systemic toxicity. NMA confirmed structural flexibility near binding regions, supporting ligand accommodation.

Conclusion: Withaferin A shows promise as a natural alternative to APR-246 for targeting mutant p53. While computational results are encouraging, further validation through molecular dynamics simulations and biological assays is warranted to confirm therapeutic potential.

Keywords: Mutant p53 (R248Q), APR-246, Withaferin A, Molecular docking, In silico drug discovery.

References


Adki, K. M., Murugesan, S., & Kulkarni, Y. A. (2020). In Silico and In Vivo Toxicological Evaluation of Paeonol. Chemistry & Biodiversity, 17(10). https://doi.org/10.1002/cbdv.202000422

Altobelli, E., Rapacchietta, L., Angeletti, P., Barbante, L., Profeta, F., & Fagnano, R. (2017). Breast Cancer Screening Programmes across the WHO European Region: Differences among Countries Based on National Income Level. International Journal of Environmental Research and Public Health, 14(4), 452. https://doi.org/10.3390/ijerph14040452

Alves, A. C., Magarkar, A., Horta, M., Lima, J. L. F. C., Bunker, A., Nunes, C., & Reis, S. (2017). Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Scientific Reports, 7(1), 6343. https://doi.org/10.1038/s41598-017-06445-z

Anderson, B. O., Ilbawi, A. M., & El Saghir, N. S. (2015). Breast Cancer in Low and Middle Income Countries (LMICs): A Shifting Tide in Global Health. The Breast Journal, 21(1), 111–118.  https://doi.org/10.1111/tbj.12357

Bauer, J. A., Pavlovic, J., & Bauerová-Hlinková, V. (2019). Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules, 24(18), 3293. https://doi.org/10.3390/molecules24183293

Behl, T., Sharma, A., Sharma, L., Sehgal, A., Zengin, G., Brata, R., Fratila, O., & Bungau, S. (2020). Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines, 8(12), 571. https://doi.org/10.3390/biomedicines8120571

Bhargava, P., Malik, V., Liu, Y., Ryu, J., Kaul, S. C., Sundar, D., & Wadhwa, R. (2019). Molecular Insights Into Withaferin-A-Induced Senescence: Bioinformatics and Experimental Evidence to the Role of NFκB and CARF. The Journals of Gerontology: Series A, 74(2), 183–191. https://doi.org/10.1093/gerona/gly107

Blomme, E. A. G., & Will, Y. (2016). Toxicology Strategies for Drug Discovery: Present and Future. Chemical Research in Toxicology, 29(4), 473–504. https://doi.org/10.1021/acs.chemrestox.5b00407

Bykov, V. J. N., Eriksson, S. E., Bianchi, J., & Wiman, K. G. (2018). Targeting mutant p53 for efficient cancer therapy. Nature Reviews Cancer, 18(2), 89–102. https://doi.org/10.1038/nrc.2017.109

Chamberlain, M. C., Baik, C. S., Gadi, V. K., Bhatia, S., & Chow, L. Q. M. (2017). Systemic therapy of brain metastases: non–small cell lung cancer, breast cancer, and melanoma. Neuro-Oncology, 19(1), i1–i24. https://doi.org/10.1093/neuonc/now197

Chen, J. (2016). The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 6(3), a026104. https://doi.org/10.1101/cshperspect.a026104

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Daina, A., & Zoete, V. (2016). A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182

Dom, M., Vanden Berghe, W., & Van Ostade, X. (2020). Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Medicinal Chemistry, 11(1), 30–50. https://doi.org/10.1039/C9MD00296K

Duffy, M. J., Synnott, N. C., & Crown, J. (2017). Mutant p53 as a target for cancer treatment. European Journal of Cancer, 83, 258–265. https://doi.org/10.1016/j.ejca.2017.06.023

Dutta, R., Khalil, R., Green, R., Mohapatra, S. S., & Mohapatra, S. (2019). Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. International Journal of Molecular Sciences, 20(21), 5310. https://doi.org/10.3390/ijms20215310

Estrela, J. M., Mena, S., Obrador, E., Benlloch, M., Castellano, G., Salvador, R., & Dellinger, R. W. (2017). Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. Journal of Medicinal Chemistry, 60(23), 9413–9436. https://doi.org/10.1021/acs.jmedchem.6b01026

Feroz, W., & Sheikh, A. M. A. (2020). Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics, 21(1), 49. https://doi.org/10.1186/s43042-020-00089-x

Gaedigk, A., Dinh, J., Jeong, H., Prasad, B., & Leeder, J. (2018). Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. Journal of Personalized Medicine, 8(2), 15. https://doi.org/10.3390/jpm8020015

Hahm, E.-R., Kim, S.-H., Singh, K. B., Singh, K., & Singh, S. V. (2020). A Comprehensive Review and Perspective on Anticancer Mechanisms of Withaferin A in Breast Cancer. Cancer Prevention Research, 13(9), 721–734. https://doi.org/10.1158/1940-6207.CAPR-20-0259

Hassannia, B., Vandenabeele, P., & Vanden Berghe, T. (2019). Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 35(6), 830–849. https://doi.org/10.1016/j.ccell.2019.04.002

Kaur, R. P., Vasudeva, K., Kumar, R., & Munshi, A. (2018). Role of p53 Gene in Breast Cancer: Focus on Mutation Spectrum and Therapeutic Strategies. Current Pharmaceutical Design, 24(30), 3566–3575. https://doi.org/10.2174/1381612824666180926095709

Lepre, M., Omar, S., Grasso, G., Morbiducci, U., Deriu, M., & Tuszynski, J. (2017). Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA. Molecules, 22(8), 1358. https://doi.org/10.3390/molecules22081358

Lima, Z. S., Ghadamzadeh, M., Arashloo, F. T., Amjad, G., Ebadi, M. R., & Younesi, L. (2019). Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. Journal of Hematology & Oncology, 12(1), 38. https://doi.org/10.1186/s13045-019-0725-6

Lopes, E. A., Gomes, S., Saraiva, L., & Santos, M. M. M. (2020). Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Current Medicinal Chemistry, 26(41), 7323–7336. https://doi.org/10.2174/0929867325666181116124308

López-Blanco, J. R., & Chacón, P. (2016). New generation of elastic network models. Current Opinion in Structural Biology, 37, 46–53. https://doi.org/10.1016/j.sbi.2015.11.013

Maity, A., Majumdar, S., Priya, P., De, P., Saha, S., & Ghosh Dastidar, S. (2015). Adaptability in protein structures: structural dynamics and implications in ligand design. Journal of Biomolecular Structure and Dynamics, 33(2), 298–321. https://doi.org/10.1080/07391102.2013.873002

Mao, C., Zhao, Y., Li, F., Li, Z., Tian, S., Debinski, W., & Ming, X. (2018). P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. Journal of Controlled Release, 286, 289–300. https://doi.org/10.1016/j.jconrel.2018.08.005

Mohell, N., Alfredsson, J., Fransson, Å., Uustalu, M., Byström, S., Gullbo, J., Hallberg, A., Bykov, V. J. N., Björklund, U., & Wiman, K. G. (2015). APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death & Disease, 6(6), e1794–e1794. https://doi.org/10.1038/cddis.2015.143

Ng, J. W. K., Lama, D., Lukman, S., Lane, D. P., Verma, C. S., & Sim, A. Y. L. (2015). <scp>R248Q</scp> mutation—Beyond p53- <scp>DNA</scp> binding. Proteins: Structure, Function, and Bioinformatics, 83(12), 2240–2250. https://doi.org/10.1002/prot.24940

Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death & Differentiation, 10(4), 431–442. https://doi.org/10.1038/sj.cdd.4401183

Perdrix, A., Najem, A., Saussez, S., Awada, A., Journe, F., Ghanem, G., & Krayem, M. (2017). PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers, 9(12), 172. https://doi.org/10.3390/cancers9120172

Rath, S. N., Jena, L., & Patri, M. (2020). Understanding ligands driven mechanism of wild and mutant aryl hydrocarbon receptor in presence of phytochemicals combating Parkinson’s disease: an in silico and in vivo study. Journal of Biomolecular Structure and Dynamics, 38(3), 807–826. https://doi.org/10.1080/07391102.2019.1590240

Sarma, P. P., Dutta, D., Mirza, Z., Saikia, K. Kr., & Baishya, B. Kr. (2017). Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis. Molecular Biology, 51(2), 293–299. https://doi.org/10.1134/S0026893317020182

Shahbandi, A., Nguyen, H. D., & Jackson, J. G. (2020). TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends in Cancer, 6(2), 98–110. https://doi.org/10.1016/j.trecan.2020.01.007

Shi, Y., Jin, J., Ji, W., & Guan, X. (2018). Therapeutic landscape in mutational triple negative breast cancer. Molecular Cancer, 17(1), 99. https://doi.org/10.1186/s12943-018-0850-9

Shrivastava, I. H., Liu, C., Dutta, A., Bakan, A., & Bahar, I. (2020). Allostery as Structure-Encoded Collective Dynamics. In Structural Biology in Drug Discovery (pp. 125–141). Wiley. https://doi.org/10.1002/9781118681121.ch6

Sundar, D., Yu, Y., Katiyar, S. P., Putri, J. F., Dhanjal, J. K., Wang, J., Sari, A. N., Kolettas, E., Kaul, S. C., & Wadhwa, R. (2019). Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. Journal of Experimental & Clinical Cancer Research, 38(1), 103. https://doi.org/10.1186/s13046-019-1099-x

Uzzaman, M., Junaid, Md., & Uddin, M. N. (2020). Evaluation of anti-tuberculosis activity of some oxotitanium(IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN Applied Sciences, 2(5), 880. https://doi.org/10.1007/s42452-020-2644-0

Weichenberger, C. X., Afonine, P. V., Kantardjieff, K., & Rupp, B. (2015). The solvent component of macromolecular crystals. Acta Crystallographica Section D Biological Crystallography, 71(5), 1023–1038. https://doi.org/10.1107/S1399004715006045

Zheng, Z. (2021). An Introduction to Emergence Dynamics in Complex Systems (pp. 133–196). https://doi.org/10.1007/978-981-15-9297-3_4


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
146
View
0
Share