Integrative Biomedical Research

Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
558
Citations
1.1m
Views
723
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
Figures and Tables
RESEARCH ARTICLE   (Open Access)

Structural and Pharmacological Insights into Withaferin a Binding to Mutant p53 (R248Q): Multi-Faceted Inhibitor in Cancer Treatment

Most Farhana Akter1*, Md. Robiul Islam1, Amena Khatun Manica2, Md Abu Bakar Siddique3, Tufael4

+ Author Affiliations

Journal of Angiotherapy 6 (2) 1-11 https://doi.org/10.25163/angiotherapy.6210432

Submitted: 22 August 2022 Revised: 07 October 2022  Published: 12 October 2022 


Abstract

Background: Mutations in the TP53 gene, particularly at codon 248 (R248Q), are frequently observed in aggressive tumors and correlate with poor prognosis. Therapeutic reactivation of mutant p53 remains a significant challenge in oncology.

Aim: This study aimed to evaluate and compare the binding behavior, drug-likeness, and toxicity profiles of APR-246-a clinically studied p53 reactivator-and Withaferin A-a natural compound with reported anticancer activity-against the R248Q mutant of p53.

Methods: The wild-type p53 structure (PDB ID: 2OCJ) was modified in silico to generate the R248Q mutant. Ligands were prepared and docked using AutoDock Vina via PyRx, targeting the DNA-binding domain. Interactions were visualized through BIOVIA Discovery Studio. ADMET properties and pharmacokinetics were predicted using SwissADME, while toxicity was assessed via the ProTox-II platform. Protein flexibility was evaluated using Normal Mode Analysis (NMA), comparing predicted B-factors with crystallographic data.

Results: Withaferin A demonstrated a stronger binding affinity and more extensive hydrogen bonding near the mutation site than APR-246. Both compounds satisfied Lipinski’s Rule and showed favorable gastrointestinal absorption. However, APR-246 displayed higher water solubility, while Withaferin A exhibited greater lipophilicity and lower predicted systemic toxicity. NMA confirmed structural flexibility near binding regions, supporting ligand accommodation.

Conclusion: Withaferin A shows promise as a natural alternative to APR-246 for targeting mutant p53. While computational results are encouraging, further validation through molecular dynamics simulations and biological assays is warranted to confirm therapeutic potential.

Keywords: Mutant p53 (R248Q), APR-246, Withaferin A, Molecular docking, In silico drug discovery.

References


Adki, K. M., Murugesan, S., & Kulkarni, Y. A. (2020). In Silico and In Vivo Toxicological Evaluation of Paeonol. Chemistry & Biodiversity, 17(10). https://doi.org/10.1002/cbdv.202000422

Altobelli, E., Rapacchietta, L., Angeletti, P., Barbante, L., Profeta, F., & Fagnano, R. (2017). Breast Cancer Screening Programmes across the WHO European Region: Differences among Countries Based on National Income Level. International Journal of Environmental Research and Public Health, 14(4), 452. https://doi.org/10.3390/ijerph14040452

Alves, A. C., Magarkar, A., Horta, M., Lima, J. L. F. C., Bunker, A., Nunes, C., & Reis, S. (2017). Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Scientific Reports, 7(1), 6343. https://doi.org/10.1038/s41598-017-06445-z

Anderson, B. O., Ilbawi, A. M., & El Saghir, N. S. (2015). Breast Cancer in Low and Middle Income Countries (LMICs): A Shifting Tide in Global Health. The Breast Journal, 21(1), 111–118.  https://doi.org/10.1111/tbj.12357

Bauer, J. A., Pavlovic, J., & Bauerová-Hlinková, V. (2019). Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules, 24(18), 3293. https://doi.org/10.3390/molecules24183293

Behl, T., Sharma, A., Sharma, L., Sehgal, A., Zengin, G., Brata, R., Fratila, O., & Bungau, S. (2020). Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines, 8(12), 571. https://doi.org/10.3390/biomedicines8120571

Bhargava, P., Malik, V., Liu, Y., Ryu, J., Kaul, S. C., Sundar, D., & Wadhwa, R. (2019). Molecular Insights Into Withaferin-A-Induced Senescence: Bioinformatics and Experimental Evidence to the Role of NFκB and CARF. The Journals of Gerontology: Series A, 74(2), 183–191. https://doi.org/10.1093/gerona/gly107

Blomme, E. A. G., & Will, Y. (2016). Toxicology Strategies for Drug Discovery: Present and Future. Chemical Research in Toxicology, 29(4), 473–504. https://doi.org/10.1021/acs.chemrestox.5b00407

Bykov, V. J. N., Eriksson, S. E., Bianchi, J., & Wiman, K. G. (2018). Targeting mutant p53 for efficient cancer therapy. Nature Reviews Cancer, 18(2), 89–102. https://doi.org/10.1038/nrc.2017.109

Chamberlain, M. C., Baik, C. S., Gadi, V. K., Bhatia, S., & Chow, L. Q. M. (2017). Systemic therapy of brain metastases: non–small cell lung cancer, breast cancer, and melanoma. Neuro-Oncology, 19(1), i1–i24. https://doi.org/10.1093/neuonc/now197

Chen, J. (2016). The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 6(3), a026104. https://doi.org/10.1101/cshperspect.a026104

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Daina, A., & Zoete, V. (2016). A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182

Dom, M., Vanden Berghe, W., & Van Ostade, X. (2020). Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Medicinal Chemistry, 11(1), 30–50. https://doi.org/10.1039/C9MD00296K

Duffy, M. J., Synnott, N. C., & Crown, J. (2017). Mutant p53 as a target for cancer treatment. European Journal of Cancer, 83, 258–265. https://doi.org/10.1016/j.ejca.2017.06.023

Dutta, R., Khalil, R., Green, R., Mohapatra, S. S., & Mohapatra, S. (2019). Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. International Journal of Molecular Sciences, 20(21), 5310. https://doi.org/10.3390/ijms20215310

Estrela, J. M., Mena, S., Obrador, E., Benlloch, M., Castellano, G., Salvador, R., & Dellinger, R. W. (2017). Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. Journal of Medicinal Chemistry, 60(23), 9413–9436. https://doi.org/10.1021/acs.jmedchem.6b01026

Feroz, W., & Sheikh, A. M. A. (2020). Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics, 21(1), 49. https://doi.org/10.1186/s43042-020-00089-x

Gaedigk, A., Dinh, J., Jeong, H., Prasad, B., & Leeder, J. (2018). Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. Journal of Personalized Medicine, 8(2), 15. https://doi.org/10.3390/jpm8020015

Hahm, E.-R., Kim, S.-H., Singh, K. B., Singh, K., & Singh, S. V. (2020). A Comprehensive Review and Perspective on Anticancer Mechanisms of Withaferin A in Breast Cancer. Cancer Prevention Research, 13(9), 721–734. https://doi.org/10.1158/1940-6207.CAPR-20-0259

Hassannia, B., Vandenabeele, P., & Vanden Berghe, T. (2019). Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 35(6), 830–849. https://doi.org/10.1016/j.ccell.2019.04.002

Kaur, R. P., Vasudeva, K., Kumar, R., & Munshi, A. (2018). Role of p53 Gene in Breast Cancer: Focus on Mutation Spectrum and Therapeutic Strategies. Current Pharmaceutical Design, 24(30), 3566–3575. https://doi.org/10.2174/1381612824666180926095709

Lepre, M., Omar, S., Grasso, G., Morbiducci, U., Deriu, M., & Tuszynski, J. (2017). Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA. Molecules, 22(8), 1358. https://doi.org/10.3390/molecules22081358

Lima, Z. S., Ghadamzadeh, M., Arashloo, F. T., Amjad, G., Ebadi, M. R., & Younesi, L. (2019). Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. Journal of Hematology & Oncology, 12(1), 38. https://doi.org/10.1186/s13045-019-0725-6

Lopes, E. A., Gomes, S., Saraiva, L., & Santos, M. M. M. (2020). Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Current Medicinal Chemistry, 26(41), 7323–7336. https://doi.org/10.2174/0929867325666181116124308

López-Blanco, J. R., & Chacón, P. (2016). New generation of elastic network models. Current Opinion in Structural Biology, 37, 46–53. https://doi.org/10.1016/j.sbi.2015.11.013

Maity, A., Majumdar, S., Priya, P., De, P., Saha, S., & Ghosh Dastidar, S. (2015). Adaptability in protein structures: structural dynamics and implications in ligand design. Journal of Biomolecular Structure and Dynamics, 33(2), 298–321. https://doi.org/10.1080/07391102.2013.873002

Mao, C., Zhao, Y., Li, F., Li, Z., Tian, S., Debinski, W., & Ming, X. (2018). P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. Journal of Controlled Release, 286, 289–300. https://doi.org/10.1016/j.jconrel.2018.08.005

Mohell, N., Alfredsson, J., Fransson, Å., Uustalu, M., Byström, S., Gullbo, J., Hallberg, A., Bykov, V. J. N., Björklund, U., & Wiman, K. G. (2015). APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death & Disease, 6(6), e1794–e1794. https://doi.org/10.1038/cddis.2015.143

Ng, J. W. K., Lama, D., Lukman, S., Lane, D. P., Verma, C. S., & Sim, A. Y. L. (2015). <scp>R248Q</scp> mutation—Beyond p53- <scp>DNA</scp> binding. Proteins: Structure, Function, and Bioinformatics, 83(12), 2240–2250. https://doi.org/10.1002/prot.24940

Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death & Differentiation, 10(4), 431–442. https://doi.org/10.1038/sj.cdd.4401183

Perdrix, A., Najem, A., Saussez, S., Awada, A., Journe, F., Ghanem, G., & Krayem, M. (2017). PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers, 9(12), 172. https://doi.org/10.3390/cancers9120172

Rath, S. N., Jena, L., & Patri, M. (2020). Understanding ligands driven mechanism of wild and mutant aryl hydrocarbon receptor in presence of phytochemicals combating Parkinson’s disease: an in silico and in vivo study. Journal of Biomolecular Structure and Dynamics, 38(3), 807–826. https://doi.org/10.1080/07391102.2019.1590240

Sarma, P. P., Dutta, D., Mirza, Z., Saikia, K. Kr., & Baishya, B. Kr. (2017). Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis. Molecular Biology, 51(2), 293–299. https://doi.org/10.1134/S0026893317020182

Shahbandi, A., Nguyen, H. D., & Jackson, J. G. (2020). TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends in Cancer, 6(2), 98–110. https://doi.org/10.1016/j.trecan.2020.01.007

Shi, Y., Jin, J., Ji, W., & Guan, X. (2018). Therapeutic landscape in mutational triple negative breast cancer. Molecular Cancer, 17(1), 99. https://doi.org/10.1186/s12943-018-0850-9

Shrivastava, I. H., Liu, C., Dutta, A., Bakan, A., & Bahar, I. (2020). Allostery as Structure-Encoded Collective Dynamics. In Structural Biology in Drug Discovery (pp. 125–141). Wiley. https://doi.org/10.1002/9781118681121.ch6

Sundar, D., Yu, Y., Katiyar, S. P., Putri, J. F., Dhanjal, J. K., Wang, J., Sari, A. N., Kolettas, E., Kaul, S. C., & Wadhwa, R. (2019). Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. Journal of Experimental & Clinical Cancer Research, 38(1), 103. https://doi.org/10.1186/s13046-019-1099-x

Uzzaman, M., Junaid, Md., & Uddin, M. N. (2020). Evaluation of anti-tuberculosis activity of some oxotitanium(IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN Applied Sciences, 2(5), 880. https://doi.org/10.1007/s42452-020-2644-0

Weichenberger, C. X., Afonine, P. V., Kantardjieff, K., & Rupp, B. (2015). The solvent component of macromolecular crystals. Acta Crystallographica Section D Biological Crystallography, 71(5), 1023–1038. https://doi.org/10.1107/S1399004715006045

Zheng, Z. (2021). An Introduction to Emergence Dynamics in Complex Systems (pp. 133–196). https://doi.org/10.1007/978-981-15-9297-3_4


Article metrics
View details
0
Downloads
0
Citations
496
Views
📖 Cite article

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
496
View
0
Share