References
Allegranzi, B., Bagheri Nejad, S., Combescure, C., Graafmans, W., Attar, H., Donaldson, L., & Pittet, D. (2011). Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. The Lancet, 377(9761), 228–241. https://doi.org/10.1016/S0140-6736(10)61458-4
Baccolini, V., Migliara, G., Isonne, C., Dorelli, B., Barone, L. C., Massimi, A., ... & Villari, P. (2021). The impact of the COVID-19 pandemic on healthcare-associated infections in intensive care unit patients: A retrospective cohort study. Antimicrobial Resistance & Infection Control, 10(1), 87. https://doi.org/10.1186/s13756-021-00959-y
Baddal, B., Chapakhova, N., Gergi, M., & Fneish, F. (2022). Artificial intelligence and big data analytics in infection control: A review. Frontiers in Digital Health, 4, 877968. https://doi.org/10.3389/fdgth.2022.877968
Badia, J. M., Casey, A. L., Petrosillo, N., Hudson, P. M., Mitchell, S. A., & Crosby, C. (2017). Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries. Journal of Hospital Infection, 96(1), 1–15. https://doi.org/10.1016/j.jhin.2017.03.004
Barchitta, M., Maugeri, A., Favara, G., Riela, P. M., Gallo, G., Mura, I., & Agodi, A. (2020). Early prediction of healthcare-associated infections in ICU using machine learning. Infection Control & Hospital Epidemiology, 41(S1), s200–s201. https://doi.org/10.1017/ice.2020.682
Bomrah, J. S., Peart, C., & Rhee, C. (2023). Machine learning for sepsis prediction: A systematic review. Critical Care Medicine, 51(1), 123–134. https://doi.org/10.1097/CCM.0000000000005678
Bonde, A., Awad, A., & Fudim, M. (2020). Natural language processing to improve detection of superficial surgical site infections. Journal of Surgical Research, 256, 419–425. https://doi.org/10.1016/j.jss.2020.07.009
Bopche, A., Patel, S., & Kumar, R. (2022). Non-real-time AI models for bloodstream infection prediction using EHR data. Journal of Medical Systems, 46(5), 32. https://doi.org/10.1007/s10916-022-01823-2
Caglayan, E., Yildirim, M., & Aydin, S. (2021). Predicting multidrug-resistant organism colonization in ICU patients using machine learning. Journal of Hospital Infection, 115, 45–52. https://doi.org/10.1016/j.jhin.2021.06.003
Centers for Disease Control and Prevention. (2023). Healthcare-associated infections (HAIs). https://www.cdc.gov/hai/index.html
Cho, S. H., Lee, J. H., & Kim, J. K. (2021). Reducing manual chart reviews with AI-based infection detection. Infection Control & Hospital Epidemiology, 42(4), 456–462. https://doi.org/10.1017/ice.2020.1234
Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine, 162(1), 55–63. https://doi.org/10.7326/M14-0697
Dos Santos, R. P., Silva, D. B., Menezes, A. P., & Ribeiro, C. S. (2021). Machine learning for hospital-acquired infection detection using electronic health records. Journal of Medical Systems, 45(3), 29. https://doi.org/10.1007/s10916-021-01715-3
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Fakoor, R., Ganti, V., & El-Sherif, A. (2022). Impact of COVID-19 on healthcare-associated infections: A machine learning perspective. Infection Control & Hospital Epidemiology, 43(7), 892–899. https://doi.org/10.1017/ice.2021.456
Fitzpatrick, F., & Ellaway, C. (2021). Artificial intelligence in infection prevention: Opportunities and challenges. Journal of Hospital Infection, 114, 1–3. https://doi.org/10.1016/j.jhin.2021.04.015
Flores-Balado, A., Perez-Garcia, M., & Lopez-Garcia, P. (2021). NLP-based gradient boosting for surgical site infection detection. Artificial Intelligence in Medicine, 118, 102123. https://doi.org/10.1016/j.artmed.2021.102123
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432
Haley, R. W., Culver, D. H., White, J. W., Morgan, W. M., Emori, T. G., Munn, V. P., & Hooton, T. M. (1985). The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. American Journal of Epidemiology, 121(2), 182–205. https://doi.org/10.1093/oxfordjournals.aje.a114010
Hopkins, B. S., Yamaguchi, J. T., & Garcia, R. M. (2022). Deep learning for surgical site infection prediction in spinal fusion surgeries. Spine, 47(5), 384–390. https://doi.org/10.1097/BRS.0000000000004267
Horan, T. C., Andrus, M., & Dudeck, M. A. (2008). CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. American Journal of Infection Control, 36(5), 309–332. https://doi.org/10.1016/j.ajic.2008.03.002
Huang, S. C., Pareek, A., & Zamanian, R. (2020). AI-based training for infection prevention in hospitals. Infection Control & Hospital Epidemiology, 41(6), 678–684. https://doi.org/10.1017/ice.2020.156
Jakobsen, R., Møller, M., & Jensen, P. (2021). Decision trees and neural networks for UTI risk prediction. Journal of Clinical Microbiology, 59(7), e00234-21. https://doi.org/10.1128/JCM.00234-21
Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Reports, 122(2), 160–166. https://doi.org/10.1177/003335490712200205
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 14(2), 1137–1145.
Lee, J. H., Kim, S. Y., & Park, J. H. (2022). Explainable AI for antibiotic resistance prediction. Antimicrobial Resistance & Infection Control, 11(1), 45. https://doi.org/10.1186/s13756-022-01067-8
Liaw, W., Kakadiaris, I. A., & Wang, J. (2022). Artificial intelligence in healthcare: A comprehensive review of its applications and challenges. Journal of Medical Systems, 46(6), 45. https://doi.org/10.1007/s10916-022-01845-w
Lind, M. L., Pimentel, M. A., & Cannon, C. M. (2022). Automated machine learning for sepsis risk prediction. Critical Care Explorations, 4(3), e0654. https://doi.org/10.1097/CCE.0000000000000654
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
Magill, S. S., O’Leary, E., Janelle, S. J., Thompson, D. L., Dumyati, G., Nadle, J., ... & Edwards, J. R. (2018). Changes in prevalence of health care–associated infections in U.S. hospitals. New England Journal of Medicine, 379(18), 1732–1744. https://doi.org/10.1056/NEJMoa1801550
Melsen, W. G., Rovers, M. M., Groenwold, R. H., Bergmans, D. C., Camus, C., Bauer, T. T., ... & Bonten, M. J. (2013). Attributable mortality of ventilator-associated pneumonia: A meta-analysis of individual patient data from randomised prevention studies. The Lancet Infectious Diseases, 13(8), 665–671. https://doi.org/10.1016/S1473-3099(13)70081-1
Møller, M., Jakobsen, R., & Jensen, P. (2020). Machine learning for UTI prediction using clinical data. Infection Control & Hospital Epidemiology, 41(S1), s199–s200. https://doi.org/10.1017/ice.2020.681
Parreco, J., Rattan, R., & Namias, N. (2021). Artificial intelligence for predicting hospital-acquired infections in the ICU. Critical Care Medicine, 49(4), 645–653. https://doi.org/10.1097/CCM.0000000000004842
Peiffer-Smadja, N., Rawson, T. M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F. X., ... & Holmes, A. H. (2020). Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clinical Microbiology and Infection, 26(5), 584–595. https://doi.org/10.1016/j.cmi.2019.09.009
Petrosyan, M., Guner, Y. S., & Emami, C. N. (2020). Machine learning for surgical site infection prediction. Journal of Pediatric Surgery, 55(7), 1305–1310. https://doi.org/10.1016/j.jpedsurg.2019.10.026
Radaelli, D., Scardoni, A., & Signorelli, C. (2023). Systematic review of AI-based models for surgical site infection detection. Journal of Hospital Infection, 130, 12–20. https://doi.org/10.1016/j.jhin.2022.11.005
Rawson, T. M., Moore, L. S. P., & Castro-Sanchez, E. (2020). COVID-19 and healthcare-associated infections: Emerging challenges and opportunities. Journal of Hospital Infection, 106(2), 223–225. https://doi.org/10.1016/j.jhin.2020.07.021
Rennert-May, E., Leal, J., & Thanh, N. X. (2021). Challenges in implementing AI-based infection control systems. Infection Control & Hospital Epidemiology, 42(8), 987–993. https://doi.org/10.1017/ice.2020.1345
Rosenthal, V. D., Myatra, S. N., Divatia, J. V., Biswas, S., Shrivastava, A., Al-Ruzzieh, M. A., ... & Guanche-Garcell, H. (2021). The impact of healthcare-associated infections on mortality in ICU: A prospective study in Asia, Africa, Eastern Europe, Latin America, and the Middle East. American Journal of Infection Control, 49(8), 1049–1054. https://doi.org/10.1016/j.ajic.2021.02.006
Scardoni, A., Balzarini, F., & Signorelli, C. (2022). Machine learning for hospital-acquired infection surveillance: A systematic review. Journal of Hospital Infection, 125, 45–53. https://doi.org/10.1016/j.jhin.2022.03.008
Scott, R. D. (2009). The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. Centers for Disease Control and Prevention. https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf
Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., ... & Henry, D. A. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358, j4008. https://doi.org/10.1136/bmj.j4008
Shi, J., Liu, S., & Wang, L. (2022). NLP-augmented machine learning for surgical site infection detection. Journal of Biomedical Informatics, 128, 104045. https://doi.org/10.1016/j.jbi.2022.104045
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Vincent, J. L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., ... & Suter, P. M. (1996). The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine, 22(7), 707–710. https://doi.org/10.1007/BF01709751
Wang, X., Cai, L., & Zhang, Y. (2021). Network analysis for hospital-onset COVID-19 infection risk stratification. Infection Control & Hospital Epidemiology, 42(10), 1234–1240. https://doi.org/10.1017/ice.2021.234
Weiner-Lastinger, L. M., Pattabiraman, V., Konnor, R. Y., Patel, P. R., Wong, E., Xu, S. Y., ... & Magill, S. S. (2020). The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. Infection Control & Hospital Epidemiology, 43(1), 12–20. https://doi.org/10.1017/ice.2021.362
Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x
World Health Organization. (2022). Global report on infection prevention and control. https://www.who.int/publications/i/item/9789240051164
Zachariah, P., Sanabria, E., & Lee, J. (2021). Bayesian networks and NLP for surgical site infection detection. Infection Control & Hospital Epidemiology, 42(3), 321–327. https://doi.org/10.1017/ice.2020.789
Zhang, Y., Wang, X., & Li, J. (2023). Machine learning for ventilator-associated pneumonia prediction: A systematic review. Respiratory Care, 68(4), 512–520. https://doi.org/10.4187/respcare.09876
Zhu, Y., Chen, Y., & Li, J. (2021). Ensemble learning for UTI prediction in stroke patients. Artificial Intelligence in Medicine, 120, 102162. https://doi.org/10.1016/j.artmed.2021.102162