Integrative Biomedical Research

Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
558
Citations
1.1m
Views
720
Articles
RESEARCH ARTICLE   (Open Access)

Deep Mapping of Neuro-phenotypes Using AI-Enhanced MRI: A Contrast-Based Multiplanar Analysis

Moin Uddin Patwary1*, Tanjila Hasan Tulon1, Shamim Al Mamun1, Md. Mortuza Galib1, Ezaz Ahmad Shah1, Antu Das1, Rudro kumar Saha1, Sabrina Sultana Sneha1, Arobi Akter Mim1, Jinia1

+ Author Affiliations

Integrative Biomedical Research 9 (1) 1-8 https://doi.org/10.25163/biomedical.9110528

Submitted: 29 September 2025 Revised: 22 November 2025  Accepted: 28 November 2025  Published: 30 November 2025 


Abstract

Background: Magnetic Resonance Imaging, or MRI for short, is the workhorse of brain morphometry. However, conventional T1-weighted and T2-weighted scans lack the sensitivity at the voxel level to enable neuro-phenotyping or the early detection of pathologies. This limitation has driven the introduction of artificial intelligence (AI) to enhance internal imaging.

Methods: We got MRI data on 828 participants (aged 5-21) from an open-access dataset. Next, the images underwent some preprocessing with skull stripping, bias field correction, intensity normalization, and finally CLAHE for contrast enhancement. After that, the team applied AI-driven voxel-wise intensity mapping to generate improved heatmaps across axial, coronal, and sagittal plane Voxel intensities of specific regions-of-interest (ROIs) were extracted and compared using one-way ANOVA, which includes original, contrast-enhanced and AI-processed images.

Results: Upon analysis, AI-generated imaging produced a better visualization of the cortical borders, subcortical regions and central structures. By increasing the contrast, some asymmetries and intensity gradients become visible. This is particularly true for the anterior-posterior axis. The voxel intensity across groups differed significantly on the axial (F (2,12) = 41.56, p = 4.03×10-6), coronal (F (2,12) = 50.72, p = 1.40×10-6) and sagittal (F (2,12) = 57.76, p = 6.95×10-7) planes, illustrating the added value of the enhancement pipeline.

Conclusion: This research confirms that the use of AI image enhancement of MRI yields statistically proven improvements in anatomy at the voxel level. The pipeline suggested is a high precision toolbox for neuro-phenotyping and automating the brain shape analysis for researcher in developmental and clinical settings.

Keywords: AI-enhanced MRI, Voxel-based analysis, Brain phenotyping, Contrast mapping, T2-weighted imaging

References

Abdellatif, H., Al Mushaiqri, M., Albalushi, H., Al-Zaabi, A. A., Roychoudhury, S., & Das, S. (2022). Teaching, Learning and Assessing Anatomy with Artificial Intelligence: The Road to a Better Future. International Journal of Environmental Research and Public Health, 19(21), 14209. https://doi.org/10.3390/ijerph192114209

Agripnidis, T., Ayobi, A., Quenet, S., Chaibi, Y., Avare, C., Jacquier, A., Girard, N., Hak, J.-F., Reyre, A., Brun, G., & El Ahmadi, A.-A. (2025). Performance of an artificial intelligence tool for multi-step acute stroke imaging: A multicenter diagnostic study. European Journal of Radiology Open, 15, 100678. https://doi.org/10.1016/j.ejro.2025.100678

Amin, M. S., Rahman, A., Rashid, M. J. (2025). "AI in Precision Oncology: Revolutionizing Early Diagnosis, Imaging and Targeted Therapies", Paradise, 1(1),1-10,10340. https://doi.org/10.25163/paradise.1110340

Amin, M. S., Rahman, A. (2025). "Integrative approaches of AI in personalised disease management: From diagnosis to drug delivery", Paradise, 1(1),1-10,10339. https://doi.org/10.25163/paradise.1110339

Aubert-Broche, B., Fonov, V. S., García-Lorenzo, D., Mouiha, A., Guizard, N., Coupé, P., Eskildsen, S. F., & Collins, D. L. (2013). A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. NeuroImage, 82, 393–402. https://doi.org/10.1016/j.neuroimage.2013.05.065

Bacon, E. J., He, D., Achi, N. A. D., Wang, L., Li, H., Yao-Digba, P. D. Z., Monkam, P., & Qi, S. (2024). Neuroimage analysis using artificial intelligence approaches: a systematic review. Medical & Biological Engineering & Computing, 62(9), 2599–2627. https://doi.org/10.1007/s11517-024-03097-w

Bauer, E., Greiff, S., Graesser, A. C., Scheiter, K., & Sailer, M. (2025). Looking Beyond the Hype: Understanding the Effects of AI on Learning. Educational Psychology Review, 37(2), 45. https://doi.org/10.1007/s10648-025-10020-8

Bowness, J. S., Morse, R., Lewis, O., Lloyd, J., Burckett-St Laurent, D., Bellew, B., Macfarlane, A. J. R., Pawa, A., Taylor, A., Noble, J. A., & Higham, H. (2024). Variability between human experts and artificial intelligence in identification of anatomical structures by ultrasound in regional anaesthesia: a framework for evaluation of assistive artificial intelligence. British Journal of Anaesthesia, 132(5), 1063–1072. https://doi.org/10.1016/j.bja.2023.09.023

Cameron C. McKay, Brooke Scheinberg, Ellie P. Xu, Katharina Kircanski, Daniel S. Pine, Melissa A. Brotman, Ellen Leibenluft, and Julia O. Linke (2024). Emotion and Development Branch Phenotyping and DTI (2012-2017). OpenNeuro. [Dataset] doi:10.18112/openneuro.ds004605.v1.0.1  

Chen, X., Zhang, X., Xie, H., Tao, X., Wang, F. L., Xie, N., & Hao, T. (2021). A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research. Multimedia Tools and Applications, 80(11), 17335–17363. https://doi.org/10.1007/s11042-020-09062-7

Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going? Neuron, 67(5), 728–734. https://doi.org/10.1016/j.neuron.2010.08.040

Hoisak, J. D. P., & Jaffray, D. A. (2011). A method for assessing voxel correspondence in longitudinal tumor imaginga). Medical Physics, 38(5), 2742–2753. https://doi.org/10.1118/1.3578600

Khadhraoui, E., Nickl-Jockschat, T., Henkes, H., Behme, D., & Müller, S. J. (2024). Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer. Frontiers in Aging Neuroscience, 16. https://doi.org/10.3389/fnagi.2024.1459652

Khalifa, M., & Albadawy, M. (2024). AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computer Methods and Programs in Biomedicine Update, 5, 100146. https://doi.org/10.1016/j.cmpbup.2024.100146

Kim, N.-H., Yang, B.-E., Kang, S.-H., Kim, Y.-H., Na, J.-Y., Kim, J.-E., & Byun, S.-H. (2024). Preclinical and Preliminary Evaluation of Perceived Image Quality of AI-Processed Low-Dose CBCT Analysis of a Single Tooth. Bioengineering, 11(6), 576. https://doi.org/10.3390/bioengineering11060576

Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30(4), 1310–1327. https://doi.org/10.1002/hbm.20599

Lee, K., Ji, J. L., Fonteneau, C., Berkovitch, L., Rahmati, M., Pan, L., Repovš, G., Krystal, J. H., Murray, J. D., & Anticevic, A. (2023). Human brain state dynamics reflect individual neuro-phenotypes. https://doi.org/10.1101/2023.09.18.557763

Lerch, J. P., van der Kouwe, A. J. W., Raznahan, A., Paus, T., Johansen-Berg, H., Miller, K. L., Smith, S. M., Fischl, B., & Sotiropoulos, S. N. (2017). Studying neuroanatomy using MRI. Nature Neuroscience, 20(3), 314–326. https://doi.org/10.1038/nn.4501

Liu, Z., Yao, B., Wen, J., Wang, M., Ren, Y., Chen, Y., Hu, Z., Li, Y., Liang, D., Liu, X., Zheng, H., Luo, D., & Zhang, N. (2023). Voxel-wise mapping of DCE-MRI time-intensity-curve profiles enables visualizing and quantifying hemodynamic heterogeneity in breast lesions. European Radiology, 34(1), 182–192. https://doi.org/10.1007/s00330-023-10102-7

Makris, N., Rushmore, R., Kaiser, J., Albaugh, M., Kubicki, M., Rathi, Y., Zhang, F., O’Donnell, L. J., Yeterian, E., Caviness, V. S., & Kennedy, D. N. (2023). A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology. Developmental Neuroscience, 45(4), 161–180. https://doi.org/10.1159/000530358

Malczewski, K. (2025). Multimodal Sparse Reconstruction and Deep Generative Networks: A Paradigm Shift in MR-PET Neuroimaging. Applied Sciences, 15(15), 8744. https://doi.org/10.3390/app15158744

Marsh, R., Gerber, A. J., & Peterson, B. S. (2008). Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 47(11), 1233–1251. https://doi.org/10.1097/CHI.0b013e318185e703

Namburete, A. I. L., Papiez, B. W., Fernandes, M., Wyburd, M. K., Hesse, L. S., Moser, F. A., Ismail, L. C., Gunier, R. B., Squier, W., Ohuma, E. O., Carvalho, M., Jaffer, Y., Gravett, M., Wu, Q., Lambert, A., Winsey, A., Restrepo-Méndez, M. C., Bertino, E., Purwar, M., … Kennedy, S. H. (2023). Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years. Nature, 623(7985), 106–114. https://doi.org/10.1038/s41586-023-06630-3

Neier, K., Grant, T. E., Palmer, R. L., Chappell, D., Hakam, S. M., Yasui, K. M., Rolston, M., Settles, M. L., Hunter, S. S., Madany, A., Ashwood, P., Durbin-Johnson, B., LaSalle, J. M., & Yasui, D. H. (2021). Sex disparate gut microbiome and metabolome perturbations precede disease progression in a mouse model of Rett syndrome. Communications Biology, 4(1), 1408. https://doi.org/10.1038/s42003-021-02915-3

Norbom, L. B., Rokicki, J., Alnæs, D., Kaufmann, T., Doan, N. T., Andreassen, O. A., Westlye, L. T., & Tamnes, C. K. (2020). Maturation of cortical microstructure and cognitive development in childhood and adolescence: A T1w/T2w ratio <scp>MRI</scp> study. Human Brain Mapping, 41(16), 4676–4690. https://doi.org/10.1002/hbm.25149

Pascucci, D., Tourbier, S., Rué-Queralt, J., Carboni, M., Hagmann, P., & Plomp, G. (2022). Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes. Scientific Data, 9(1), 9. https://doi.org/10.1038/s41597-021-01116-1

Qian, G., Khoury, T. A., Peng, M. W., & Qian, Z. (2010). The performance implications of intra- and inter-regional geographic diversification. Strategic Management Journal, 31(9), 1018–1030. https://doi.org/10.1002/smj.855

Romano, D., Nicolau, M., Quintin, E., Mazaika, P. K., Lightbody, A. A., Cody Hazlett, H., Piven, J., Carlsson, G., & Reiss, A. L. (2014). Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome. Human Brain Mapping, 35(9), 4904–4915. https://doi.org/10.1002/hbm.22521

Rushmore, R. J., Bouix, S., Kubicki, M., Rathi, Y., Rosene, D. L., Yeterian, E. H., & Makris, N. (2021). MRI-based Parcellation and Morphometry of the Individual Rhesus Monkey Brain: the macaque Harvard-Oxford Atlas (mHOA), a translational system referencing a standardized ontology. Brain Imaging and Behavior, 15(3), 1589–1621. https://doi.org/10.1007/s11682-020-00357-9

Saifullah, S., Pranolo, A., & Drezewski, R. (2024). Comparative analysis of image enhancement techniques for braintumor segmentation: contrast, histogram, and hybrid approaches. E3S Web of Conferences, 501, 01020. https://doi.org/10.1051/e3sconf/202450101020

Shaheema, B., Muppalaneni, N. B., & Devi, K. S. (2025). An explainable deep learning-based panoptic segmentation for brain tumor diagnosis. Neural Computing and Applications, 37(25), 20639–20662. https://doi.org/10.1007/s00521-025-11459-0

Singh, M., Verma, A., & Sharma, N. (2018). An Optimized Cascaded Stochastic Resonance for the Enhancement of Brain MRI. IRBM, 39(5), 334–342. https://doi.org/10.1016/j.irbm.2018.08.002

Sun, Z., & Ng, C. K. C. (2022). Finetuned Super-Resolution Generative Adversarial Network (Artificial Intelligence) Model for Calcium Deblooming in Coronary Computed Tomography Angiography. Journal of Personalized Medicine, 12(9), 1354. https://doi.org/10.3390/jpm12091354

Thirion, B., Thual, A., & Pinho, A. L. (2021). From deep brain phenotyping to functional atlasing. Current Opinion in Behavioral Sciences, 40, 201–212. https://doi.org/10.1016/j.cobeha.2021.05.004

Tufael, Atiqur Rahman Sunny et al. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare, 4(1), 1-5, 9798.  https://doi.org/10.25163/primeasia.419798

Tufael and Atikur Rahmen Sunnay (2022). Transforming Healthcare with Artificial Intelligence: Innovations, Applications, and Future Challenges, Journal of Primeasia, 3(1), 1-6, 9802. https://doi.org/10.25163/primeasia.319802

Tufael and, Atikur Rahman Sunny (2021). Artificial Intelligence in Healthcare: A Review of Diagnostic Applications and Impact on Clinical Practice, Journal of Primeasia, 2(1), 1-5, 9816. https://doi.org/10.25163/primeasia.219816

Van Horn, J. D., Ellmore, T. M., Esposito, G., & Berman, K. F. (1998). Mapping Voxel-Based Statistical Power on Parametric Images. NeuroImage, 7(2), 97–107. https://doi.org/10.1006/nimg.1997.0317

Xu, M., Wang, X., Wang, L., Wang, S., Deng, J., Wang, Y., Li, Y., Pan, S., Liao, A., Tao, Y., & Tan, S. (2023). Effects of chronic sleep restriction on the neuro-phenotypes of Ctnnd2 knockout mice. Brain and Behavior, 13(7). https://doi.org/10.1002/brb3.3075

Zhang, S., Jiang, L., Hu, Z., Liu, W., Yu, H., Chu, Y., Wang, J., & Chen, Y. (2024). T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 134, 111040. https://doi.org/10.1016/j.pnpbp.2024.111040


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
66
View
3
Share