Integrative Biomedical Research

Integrative Biomedical Research (Journal of Angiotherapy) | Online ISSN  3068-6326
558
Citations
1.1m
Views
723
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

Understanding Infectious Diseases: Prevention, Management, and Emerging Challenges

Abstract References

Badr Rashd Alrashedi 1*, Sari Mabrook Alrasheedi 1, Eman Smair Alanazi 1, Fatmah Malfi Altalouhi 1, Samar Saad Alotaibi 1, Tariq Mohammed Ruwayshid Alrehaili 1, Fahad Farej F. Alshammari 1, Badr Rashd Alrashedi 1, Abdullah Saleh Alshowmer 1, Abdullah Sabih Alanazi 1, Hamad Wazi Mulhi Alqahtani 1, Meshaal Ibrahim Al Owais 1, Adel Awadh Alrasheedi 1, Naser Algareesh 1, Sultan Khalifah Mabruk Almutairi 1, Mohammed Saeed Saleh  Al Qahtani 1

+ Author Affiliations

Journal of Angiotherapy 8 (8) 1-15 https://doi.org/10.25163/angiotherapy.8810537

Submitted: 30 May 2024 Revised: 31 July 2024  Accepted: 06 August 2024  Published: 08 August 2024 


Abstract

Infectious diseases continue to pose a major challenge to global health, affecting millions annually and straining healthcare systems worldwide. This systematic review provides a comprehensive overview of infectious diseases, exploring their definitions, classifications, and the diverse nature of bacterial, viral, fungal, and parasitic infections. The review demonstrates how pathogens interact with hosts, the typical symptoms of infections, and the environmental and social factors that facilitate disease spread. Emphasis is placed on preventive strategies, including vaccination, personal hygiene, community-level interventions, hospital infection control practices, and global public health policies. The review also addresses treatment approaches, the role of antimicrobials, and the growing concern of antimicrobial resistance. Emerging infectious threats and future challenges are highlighted, underlining the critical need for robust surveillance, ongoing research, and international collaboration. By integrating knowledge of disease transmission, prevention, and management, this review aims to provide a holistic understanding of infectious diseases. Special attention is given to safeguarding vulnerable populations, emphasizing the importance of early detection, preventive measures, and informed public health policies to reduce disease burden effectively. This review underscores the interconnectedness of individual, community, and global efforts in controlling infectious diseases and fostering resilient healthcare systems.

Keywords: infectious diseases, pathogens, disease prevention, vaccination, antimicrobial resistance, infection control, epidemiology, public health, microbial infections, parasitic diseases

References

Alldredge, J., Kumar, V., Nguyen, J., et al. (2023). Endogenous retrovirus RNA expression differences between race, stage and HPV status offer improved prognostication among women with cervical cancer. International Journal of Molecular Sciences, 24, 1492. https://doi.org/10.3390/ijms24051492

Balasubramaniam, S. D., Balakrishnan, V., Oon, C. E., et al. (2019). Key molecular events in cervical cancer development. Medicina, 55, 384. https://doi.org/10.3390/medicina55070384

Benites-Zapata, V. A., Hernandez-Bustamante, E. A., Acuña-Chávez, L. M., et al. (2023). Colposcopy in the primary health care: A scoping review. Journal of Primary Care & Community Health, 14, 21501319231198942. https://doi.org/10.1177/21501319231198942

Bhatla, N., Aoki, D., Sharma, D. N., et al. (2018). Cancer of the cervix uteri. International Journal of Gynecology & Obstetrics, 143, 22–36. https://doi.org/10.1002/ijgo.12463

Bhattacharjee, R., Das, S. S., Biswal, S. S., et al. (2022). Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Critical Reviews in Oncology/Hematology, 174, 103675. https://doi.org/10.1016/j.critrevonc.2022.103675

 Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi, 3(4), 57. https://doi.org/10.3390/jof3040057

Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492

Bray, F., Laversanne, M., Sung, H., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74, 229–263. https://doi.org/10.3322/caac.21708

Bruni, L., Serrano, B., Roura, E., et al. (2022). Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: A review and synthetic analysis. Lancet Global Health, 10, e1115–e1127. https://doi.org/10.1016/S2214-109X(22)00073-8

Centers for Disease Control and Prevention. (2023). Antibiotic resistance threats in the United States. CDC.

Cheng, M. A., Farmer, E., Huang, C., et al. (2018). Therapeutic DNA vaccines for human papillomavirus and associated diseases. Human Gene Therapy, 29, 971–996. https://doi.org/10.1089/hum.2018.056

Chung, H. C., Ros, W., Delord, J. P., et al. (2019). Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. Journal of Clinical Oncology, 37, 1470–1478. https://doi.org/10.1200/JCO.19.00066

Cohen, A. C., Roane, B. M., Leath, C. A. 3rd. (2020). Novel therapeutics for recurrent cervical cancer: Moving towards personalized therapy. Drugs, 80, 217–227. https://doi.org/10.1007/s40265-020-01300-8

Colombo, N., Dubot, C., Lorusso, D., et al. (2021). Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. New England Journal of Medicine, 385, 1856–1867. https://doi.org/10.1056/NEJMoa2102090

Cook, D. A., Krajden, M., Brentnall, A. R., et al. (2019). Evaluation of a validated methylation triage signature for human papillomavirus positive women in the HPV FOCAL cervical cancer screening trial. International Journal of Cancer, 144, 2587–2595. https://doi.org/10.1002/ijc.32083

Copley, K. E., & Shorter, J. (2023). Repetitive elements in aging and neurodegeneration. Trends in Genetics, 39, 381–400. https://doi.org/10.1016/j.tig.2023.03.003

Curry, S. J., Krist, A. H., Owens, D. K., et al. (2018). Screening for cervical cancer: US Preventive Services Task Force recommendation statement. JAMA, 320, 674–686. https://doi.org/10.1001/jama.2018.10897

Curty, G., Marston, J. L., de Mulder Rougvie, M., et al. (2020). Human endogenous retrovirus K in cancer: A potential biomarker and immunotherapeutic target. Viruses, 12, 726. https://doi.org/10.3390/v12100726

Curty, G., Menezes, A. N., Brant, A. C., et al. (2021). Expression of retroelements in cervical cancer and their interplay with HPV infection and host gene expression. Cancers, 13, 3513. https://doi.org/10.3390/cancers13143513

De Felice, F., Marchetti, C., Palaia, I., et al. (2018). Immune check-point in cervical cancer. Critical Reviews in Oncology/Hematology, 129, 40–43. https://doi.org/10.1016/j.critrevonc.2018.04.003

De Sanjosé, S., Brotons, M., Pavón, M. A. (2018). The natural history of human papillomavirus infection. Best Practice & Research Clinical Obstetrics & Gynaecology, 47, 2–13. https://doi.org/10.1016/j.bpobgyn.2017.12.009

Dhillon, P., Mulholland, K. A., Hu, H., et al. (2023). Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nature Communications, 14, 559. https://doi.org/10.1038/s41467-023-36197-4

Dong, B., Zou, H., Mao, X., et al. (2021). Effect of introducing human papillomavirus genotyping into real-world screening on cervical cancer screening in China: A retrospective population-based cohort study. Therapeutic Advances in Medical Oncology, 13, 17588359211010939. https://doi.org/10.1177/17588359211010939

European Centre for Disease Prevention and Control. (2023). Antimicrobial resistance surveillance in Europe. ECDC.

Fontham, E. T. H., Wolf, A. M. D., Church, T. R., et al. (2020). Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA: A Cancer Journal for Clinicians, 70, 321–346. https://doi.org/10.3322/caac.21628

Frazer, I. H. (2019). The HPV vaccine story. ACS Pharmacology & Translational Science, 2, 210–212. https://doi.org/10.1021/acsptsci.9b00060

Gavinski, K., & DiNardo, D. (2023). Cervical cancer screening. Medical Clinics of North America, 107, 259–269. https://doi.org/10.1016/j.mcna.2022.09.001

GBD 2023 Antimicrobial Resistance Collaborators. (2024). Global burden of bacterial antimicrobial resistance, 2010-2023. The Lancet, 403(10442), 187-212.

Giorgi Rossi, P., Carozzi, F., Ronco, G., et al. (2021). P16/ki67 and E6/E7 mRNA accuracy and prognostic value in triaging HPV DNA-positive women. Journal of the National Cancer Institute, 113, 292–300. https://doi.org/10.1093/jnci/djaa157

Grunwitz, C., Salomon, N., Vascotto, F., et al. (2019). HPV16 RNA-LPX vaccine mediates complete regression of aggressively growing HPV-positive mouse tumors and establishes protective T cell memory. Oncoimmunology, 8, e1629259. https://doi.org/10.1080/2162402X.2019.1629259

Guo, C. (2023). Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clinical and Translational Medicine, 13, e1219. https://doi.org/10.1002/ctm2.1219

Hoppe-Seyler, K., Bossler, F., Braun, J. A., et al. (2018). The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. Trends in Microbiology, 26, 158–168. https://doi.org/10.1016/j.tim.2017.09.001

Jeronimo, J., Castle, P. E., Temin, S., et al. (2017). Secondary prevention of cervical cancer: ASCO resource-stratified clinical practice guideline. Journal of Global Oncology, 3, 635–657. https://doi.org/10.1200/JGO.2017.008337

Johnson, W. E. (2019). Origins and evolutionary consequences of ancient endogenous retroviruses. Nature Reviews Microbiology, 17(6), 355–370. https://doi.org/10.1038/s41579-019-0205-5

Jönsson, M. E., Garza, R., Johansson, P. A., et al. (2020). Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends in Genetics, 36(8), 610–623. https://doi.org/10.1016/j.tig.2020.05.001

Ko, E. J., Song, K. S., Ock, M. S., et al. (2021). Expression profiles of human endogenous retrovirus (HERV)-K and HERV-R Env proteins in various cancers. BMB Reports, 54(5), 368–373. https://doi.org/10.5483/BMBRep.2021.54.5.046

Koensgen, D., Sehouli, J., Belau, A., et al. (2017). Clinical outcome of neoadjuvant radiochemotherapy in locally advanced cervical cancer: results of an open prospective, multicenter phase 2 study of the North-Eastern German Society of Gynecological Oncology. International Journal of Gynecological Cancer, 27(3), 500–506. https://doi.org/10.1097/IGC.0000000000000940

Koliopoulos, G., Nyaga, V. N., Santesso, N., et al. (2017). Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database of Systematic Reviews, 8, CD008587. https://doi.org/10.1002/14651858.CD008587.pub3

Koster, S., Gurumurthy, R. K., Kumar, N., et al. (2022). Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming. Nature Communications, 13, 1030. https://doi.org/10.1038/s41467-022-28668-2

Kremer, W. W., Van Zummeren, M., Novianti, P. W., et al. (2018). Detection of hypermethylated genes as markers for cervical screening in women living with HIV. Journal of the International AIDS Society, 21(e25165). https://doi.org/10.1002/jia2.25165

Kyrgiou, M., Arbyn, M., Bergeron, C., et al. (2020). Cervical screening: ESGO–EFC position paper of the European Society of Gynaecologic Oncology (ESGO) and the European Federation of Colposcopy (EFC). British Journal of Cancer, 123, 510–517. https://doi.org/10.1038/s41416-020-0956-7

Lei, J., Ploner, A., Elfström, K. M., et al. (2020). HPV vaccination and the risk of invasive cervical cancer. New England Journal of Medicine, 383, 1340–1348. https://doi.org/10.1056/NEJMoa1917338

Leon, K. E., Tangudu, N. K., Aird, K. M., et al. (2021). Loss of p16: a bouncer of the immunological surveillance? Life, 11(4), 309. https://doi.org/10.3390/life11040309

Li, C., Hua, K. (2022). Dissecting the single-cell transcriptome network of immune environment underlying cervical premalignant lesion, cervical cancer and metastatic lymph nodes. Frontiers in Immunology, 13, 897366. https://doi.org/10.3389/fimmu.2022.897366

Li, C., Ke, J., Liu, J., et al. (2020). DNA methylation data-based molecular subtype classification related to the prognosis of patients with cervical cancer. Journal of Cellular Biochemistry, 121(6), 2713–2724. https://doi.org/10.1002/jcb.29591

Li, M., Radvanyi, L., Yin, B., et al. (2017). Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clinical Cancer Research, 23(19), 5892–5911. https://doi.org/10.1158/1078-0432.CCR-16-2473

Liu, C., Li, X., Huang, Q., et al. (2023). Single-cell RNA-sequencing reveals radiochemotherapy-induced innate immune activation and MHC-II upregulation in cervical cancer. Signal Transduction and Targeted Therapy, 8, 44. https://doi.org/10.1038/s41392-023-01300-0

Liu, C., Lu, J., Tian, H., et al. (2017). Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Molecular Medicine Reports, 15(3), 1063–1070. https://doi.org/10.3892/mmr.2016.6032

Liu, H., Xu, J., Yang, Y., et al. (2021). Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proceedings of the National Academy of Sciences, 118(26), e2014195118. https://doi.org/10.1073/pnas.2014195118

Mayadev, J., Nunes, A. T., Li, M., et al. (2020). CALLA: efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study. International Journal of Gynecological Cancer, 30(8), 1065–1070. https://doi.org/10.1136/ijgc-2020-001524

Mayadev, J., Zamarin, D., Deng, W., et al. (2020). Anti-PD-L1 (atezolizumab) as an immune primer and concurrently with extended-field chemoradiotherapy for node-positive locally advanced cervical cancer. International Journal of Gynecological Cancer, 30(5), 701–710. https://doi.org/10.1136/ijgc-2020-001491

McBride, A. A. (2017). Mechanisms and strategies of papillomavirus replication. Biological Chemistry, 398(10), 919–927. https://doi.org/10.1515/hsz-2017-0131

Melnikow, J., Henderson, J. T., Burda, B. U., et al. (2018). Screening for cervical cancer with high-risk human papillomavirus testing: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 320(7), 687–705. https://doi.org/10.1001/jama.2018.10780

Mileshkin, L. R., Moore, K. N., Barnes, E. H., et al. (2023). Adjuvant chemotherapy following chemoradiotherapy as primary treatment for locally advanced cervical cancer versus chemoradiotherapy alone (OUTBACK): an international, open-label, randomised, phase 3 trial. Lancet Oncology, 24(4), 468–482. https://doi.org/10.1016/S1470-2045(23)00003-5

Mix, J. M., Van Dyne, E. A., Saraiya, M., et al. (2021). Assessing impact of HPV vaccination on cervical cancer incidence among women aged 15–29 years in the United States, 1999–2017: an ecologic study. Cancer Epidemiology, Biomarkers & Prevention, 30(1), 30–37. https://doi.org/10.1158/1055-9965.EPI-20-0976

Murray, C. J. L., et al. (2024). Global disease burden estimates for infectious diseases 1990-2023. The Lancet, 403(10441), 1-38.

Oliver, S. E., Unger, E. R., Lewis, R., et al. (2017). Prevalence of human papillomavirus among females after vaccine introduction—National Health and Nutrition Examination Survey, United States, 2003–2014. Journal of Infectious Diseases, 216(5), 594–603. https://doi.org/10.1093/infdis/jix364

Oyouni, A. A. A. (2023). Human papillomavirus in cancer: infection, disease transmission, and progress in vaccines. Journal of Infection and Public Health, 16(5), 626–631. https://doi.org/10.1016/j.jiph.2023.02.004

Pal, A., & Kundu, R. (2019). Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Frontiers in Microbiology, 10, 3116. https://doi.org/10.3389/fmicb.2019.03116

Panda, A., de Cubas, A. A., Stein, M., et al. (2018). Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight, 3(19), e121522. https://doi.org/10.1172/jci.insight.121522

Pardini, B., De Maria, D., Francavilla, A., et al. (2018). MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer, 18, 696. https://doi.org/10.1186/s12885-018-4600-3

Pei, J., Shu, T., Wu, C. Y., et al. (2023). Impact of human papillomavirus vaccine on cervical cancer epidemic: evidence from the surveillance, epidemiology, and end results program. Frontiers in Public Health, 10, 998174. https://doi.org/10.3389/fpubh.2022.998174

Perkins, R. B., Wentzensen, N., Guido, R. S., et al. (2023). Cervical cancer screening. JAMA, 330(6), 547–558. https://doi.org/10.1001/jama.2023.12264

Piña-Sánchez, P. (2022). Human papillomavirus: challenges and opportunities for the control of cervical cancer. Archives of Medical Research, 53(6), 753–769. https://doi.org/10.1016/j.arcmed.2022.09.001

Prudden, H. J., Achilles, S. L., Schocken, C., et al. (2022). Understanding the public health value and defining preferred product characteristics for therapeutic human papillomavirus (HPV) vaccines: World Health Organization consultations, October 2021–March 2022. Vaccine, 40(41), 5843–5855. https://doi.org/10.1016/j.vaccine.2022.07.038

Qiu, H., Cao, S., & Xu, R. (2021). Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Communications, 41(10), 1037–1048. https://doi.org/10.1002/cac2.12197

Rahangdale, L., Mungo, C., O'Connor, S., et al. (2022). Human papillomavirus vaccination and cervical cancer risk. BMJ, 379, e070115. https://doi.org/10.1136/bmj-2022-070115

Ramos da Silva, J., Bitencourt Rodrigues, K., Formoso Pelegrin, G., et al. (2023). Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Science Translational Medicine, 15, eabn3464. https://doi.org/10.1126/scitranslmed.abn3464

Rezaei, S. D., Hayward, J. A., Norden, S., et al. (2021). HERV-K gag RNA and protein levels are elevated in malignant regions of the prostate in males with prostate cancer. Viruses, 13(3), 449. https://doi.org/10.3390/v13030449

Soleimani-Jelodar, R., Arashkia, A., Shoja, Z., et al. (2024). The expression analysis of human endogenous retrovirus-K env, Np9, and rec transcripts in cervical cancer. Journal of Medical Virology, 96(1), e29501. https://doi.org/10.1002/jmv.29501

Stricker, E., Peckham-Gregory, E. C., Scheurer, M. E., et al. (2023). CancerHERVdb: human endogenous retrovirus (HERV) expression database for human cancer accelerates studies of the retrovirome and predictions for HERV-based therapies. Journal of Virology, 97(5), e0005923. https://doi.org/10.1128/jvi.00059-23

Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tavakolian, S., Goudarzi, H., Moridi, A., et al. (2021). Analysing the HERV-K env, np9, rec and gag expression in cervical tissues. New Microbes and New Infections, 44, 100936. https://doi.org/10.1016/j.nmni.2021.100936

The Cancer Genome Atlas Research Network. (2017). Integrated genomic and molecular characterization of cervical cancer. Nature, 543(7645), 378–384. https://doi.org/10.1038/nature21386

Tiiti, T. A., Selabe, S. G., Bogers, J., et al. (2022). High prevalence of and factors associated with human papillomavirus infection among women attending a tertiary hospital in Gauteng Province, South Africa. BMC Cancer, 22, 854. https://doi.org/10.1186/s12885-022-09971-8

Tse, S. W., McKinney, K., Walker, W., et al. (2021). mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Molecular Therapy, 29(7), 2227–2238. https://doi.org/10.1016/j.ymthe.2021.04.021

Tsu, V. D., LaMontagne, D. S., Atuhebwe, P., et al. (2021). National implementation of HPV vaccination programs in low-resource countries: lessons, challenges, and future prospects. Preventive Medicine, 144, 106335. https://doi.org/10.1016/j.ypmed.2020.106335

Wang, J., Li, Z., Gao, A., et al. (2019). The prognostic landscape of tumor-infiltrating immune cells in cervical cancer. Biomedicine & Pharmacotherapy, 120, 109444. https://doi.org/10.1016/j.biopha.2019.109444

 World Bank. (2022). The global economic burden of antimicrobial resistance. World Bank Publications.

 World Health Organization. (2023). Global report on infection prevention and control. WHO Press.

 World Health Organization. (2024). Antimicrobial resistance global surveillance report. WHO Press.

Wu, Q., Zhao, X., Fu, Y., et al. (2017). A cross-sectional study on HPV testing with type 16/18 genotyping for cervical cancer screening in 11,064 Chinese women. Cancer Medicine, 6(5), 1091–1101. https://doi.org/10.1002/cam4.1080

Yadav, C., Yadav, R., Chabbra, R., et al. (2023). Overview of genetic and epigenetic regulation of human papillomavirus and apoptosis in cervical cancer. Apoptosis, 28(8), 683–701. https://doi.org/10.1007/s10495-023-01845-9

Yu, C., Lei, X., Chen, F., et al. (2022). ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nature Communications, 13, 3501. https://doi.org/10.1038/s41467-022-31234-2

Yue, S., Wang, Q., Zhang, J., et al. (2023). Understanding cervical cancer at single-cell resolution. Cancer Letters, 576, 216408. https://doi.org/10.1016/j.canlet.2023.216408

Zheng, Y., Li, X., Jiao, Y., et al. (2022). High-risk human papillomavirus oncogenic E6/E7 mRNAs splicing regulation. Frontiers in Cellular and Infection Microbiology, 12, 929666. https://doi.org/10.3389/fcimb.2022.929666

Zhou, L., Qiu, Q., Zhou, Q., et al. (2022). Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nature Communications, 13, 2563. https://doi.org/10.1038/s41467-022-30275-1

Zou, Z., Fairley, C. K., Ong, J. J., et al. (2020). Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: a cost-effectiveness analysis. Lancet Global Health, 8(10), e1335–e1344. https://doi.org/10.1016/S2214-109X(20)30294-8

Zummeren, M. V., Kremer, W. W., Leeman, A., et al. (2018). HPV E4 expression and DNA hypermethylation of CADM1, MAL, and miR124-2 genes in cervical cancer and precursor lesions. Modern Pathology, 31(11), 1842–1850. https://doi.org/10.1038/s41379-018-0105-8


Article metrics
View details
17
Downloads
0
Citations
92
Views
📖 Cite article

View Dimensions


View Plumx


View Altmetric



17
Save
0
Citation
92
View
2
Share