Bioinfo Chem

System biology and Infochemistry
1
Citations
8k
Views
10
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
RESEARCH ARTICLE   (Open Access)

Network Pharmacology and Docking-Based Evaluation of Quercetin as an Inhibitor of PI3K Pathway in Glioblastoma

Abstract Introduction 2. Material and Methods 3. Results 4. Discussion 5. Limitation 6. Conclusion References

Shahadat Hossain1*, Samima Nasrin Setu2, Maksudur Rahman Nayem3, Rifat Bin Amin4

+ Author Affiliations

Bioinfo Chem 7 (1) 1-8 https://doi.org/10.25163/bioinformatics.7110538

Submitted: 15 October 2025 Revised: 22 December 2025  Accepted: 29 December 2025  Published: 31 December 2025 


Abstract

Background: Glioblastoma multiforme (GBM) is a brain tumor that is the most aggressive and treatment-resistant tumor in adults. It has poor survival outcome. The abnormal activation of the PI3K/AKT/mTOR signaling pathway is one of the major mechanisms driving GBM progression. The limited potential and toxic nature of synthetic inhibitors necessitate safer substitutes. Quercetin, a type of flavonoid obtained from plants, shows anticancer capabilities; however, nothing is known about its multi-target potential in GBM via PI3K inhibition.

Methods: The approach relied on using systems pharmacology and molecular docking. Using network pharmacology, researchers predicted potential targets of quercetin and compared them with GBM associated genes. Functional enrichment analyses were performed using GO and KEGG. Molecular docking study was performed with PI3Kγ (PDB ID: 4OVU) and SwissADME drug-likeness.

Results: Quercetin significantly influences the binding activity associated with receptor tyrosine kinases and regulatory and catalytic activity of PI3K. The docking analysis revealed that quercetin has a stronger binding affinity (-8.6 kcal/mol) with PI3Kγ when compared with idelalisib (-7.6 kcal/mol). Quercetin was found to form hydrogen bonds and electrostatic interactions with amino acids of PI3Kγ like GLU-201, ARG-90, and ARG-209. Quercetin showed good solubility, GI absorption and inhibition profile of CYP.

Conclusion: quercetin is highlighted as a possible multi-target inhibitor of the PI3K/AKT/mTOR pathway in GBM in this study. The features that ensure modifications and stability, can create its potential as a natural and safer therapeutic in future drug development for GBM.

Keywords: Quercetin, Glioblastoma multiforme (GBM), PI3K/AKT/mTOR pathway, Molecular docking, Network pharmacology

References

Akter, M. F., Manica, A. K., Siddique, M. A. B., Tufael, Islam, M. R., Nusrat, S. (2025). "Structural Insights into TEM-1 β-Lactamase-Mediated Ceftriaxone Resistance in Escherichia coli: A Molecular Docking and Toxicity Analysis", Microbial Bioactives, 8(1), 1-11, 10447 https://doi.org/10.25163/microbbioacts.8110447

Almatroodi, S. A., Alsahli, M. A., Almatroudi, A., Verma, A. K., Aloliqi, A., Allemailem, K. S., Khan, A. A., & Rahmani, A. H. (2021). Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules, 26(5), 1315. https://doi.org/10.3390/molecules26051315

Asgharian, P., Tazekand, A. P., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Ranjbar, M., Hasan, M., Kumar, M., Beirami, S. M., Tarhriz, V., Soofiyani, S. R., Kozhamzharova, L., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell International, 22(1), 257. https://doi.org/10.1186/s12935-022-02677-w

Ashrafizadeh, M., Hushmandi, K., Mirzaei, S., Bokaie, S., Bigham, A., Makvandi, P., Rabiee, N., Thakur, V. K., Kumar, A. P., Sharifi, E., Varma, R. S., Aref, A. R., Wojnilowicz, M., Zarrabi, A., Karimi-Maleh, H., Voelcker, N. H., Mostafavi, E., & Orive, G. (2023). Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioengineering & Translational Medicine, 8(1). https://doi.org/10.1002/btm2.10325

Baqer, S. H., Al-Shawi, S. G., & Al-Younis, Z. K. (2024). Quercetin, the Potential Powerful Flavonoid for Human and Food: A Review. Frontiers in Bioscience-Elite, 16(3). https://doi.org/10.31083/j.fbe1603030

Barbarisi, M., Iaffaioli, R. V., Armenia, E., Schiavo, L., De Sena, G., Tafuto, S., Barbarisi, A., & Quagliariello, V. (2018). Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. Journal of Cellular Physiology, 233(10), 6550–6564. https://doi.org/10.1002/jcp.26238

Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Los, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. International Journal of Molecular Sciences, 23(3), 1353. https://doi.org/10.3390/ijms23031353

Biswas, P., Dey, D., Biswas, P. K., Rahaman, T. I., Saha, S., Parvez, A., Khan, D. A., Lily, N. J., Saha, K., Sohel, M., Hasan, M. M., Al Azad, S., Bibi, S., Hasan, Md. N., Rahmatullah, M., Chun, J., Rahman, Md. A., & Kim, B. (2022). A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. International Journal of Molecular Sciences, 23(19), 11746. https://doi.org/10.3390/ijms231911746

Caban, M., Owczarek, K., Chojnacka, K., & Lewandowska, U. (2019). Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. Journal of Functional Foods, 52, 389–407. https://doi.org/10.1016/j.jff.2018.11.003

Chowdhury, R., Bhuia, Md. S., Rakib, A. I., Hasan, R., Coutinho, H. D. M., Araújo, I. M., de Menezes, I. R. A., & Islam, M. T. (2023). Assessment of Quercetin Antiemetic Properties: In Vivo and In Silico Investigations on Receptor Binding Affinity and Synergistic Effects. Plants, 12(24), 4189. https://doi.org/10.3390/plants12244189

Delgado-López, P. D., & Corrales-García, E. M. (2016). Survival in glioblastoma: a review on the impact of treatment modalities. Clinical and Translational Oncology, 18(11), 1062–1071. https://doi.org/10.1007/s12094-016-1497-x

Duan, N., Hu, X., Zhou, R., Li, Y., Wu, W., & Liu, N. (2023). A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Molecular Nutrition & Food Research, 67(7). https://doi.org/10.1002/mnfr.202200435

Ezzati, S., Salib, S., Balasubramaniam, M., & Aboud, O. (2024). Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. International Journal of Molecular Sciences, 25(4), 2316. https://doi.org/10.3390/ijms25042316

Frumento, D., Grossi, G., Falesiedi, M., Musumeci, F., Carbone, A., & Schenone, S. (2024). Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. International Journal of Molecular Sciences, 25(3), 1398. https://doi.org/10.3390/ijms25031398

Huang, W., Hao, Z., Mao, F., & Guo, D. (2022). Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.911876

Islam, M. R., Manica, A. K., Akter, M. F., Siddique, M. A. B., Tufael (2023). "In Silico Drug-Likeness and Safety Profiling of Tinosporaside: A Natural Alternative to Celecoxib for COX-2 Inhibition", Journal of Primeasia, 4(1),1-8,10434. https://doi.org/10.25163/primeasia.4110434

Islam, M. R., Akter, M. F., Siddique, M. A. B., Tufael, Manica, A. K. (2025). "Integrating Clinical Data and Molecular Profiling to Predict Antibiotic-Induced Anaphylaxis: A Comparative Study of Ceftriaxone and Meropenem", Journal of Primeasia, 6(1), 1-11, 10446 https://doi.org/10.25163/primeasia.6110446

Liu, H., Qiu, W., Sun, T., Wang, L., Du, C., Hu, Y., Liu, W., Feng, F., Chen, Y., & Sun, H. (2022). Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharmaceutica Sinica B, 12(4), 1781–1804. https://doi.org/10.1016/j.apsb.2021.12.019

Mansuri, M. L., Parihar, P., Solanki, I., & Parihar, M. S. (2014). Flavonoids in modulation of cell survival signalling pathways. Genes & Nutrition, 9(3), 400. https://doi.org/10.1007/s12263-014-0400-z

McCubrey, J. A., Steelman, L. S., Kempf, C. R., Chappell, W. H., Abrams, S. L., Stivala, F., Malaponte, G., Nicoletti, F., Libra, M., Bäsecke, J., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Cocco, L., & Martelli, A. M. (2011). Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology, 226(11), 2762–2781. https://doi.org/10.1002/jcp.22647

Manica, A. K., Akter, M. F., Islam, M. R., Tufael, Siddique, M. A. B. (2022). "Computational Exploration of Xanthohumol as a Safer Natural Substitute for Tamoxifen in Estrogen Receptor-Positive Breast Cancer", Journal of Angiotherapy, 6(2),1-8,10431. https://doi.org/10.25163/angiotherapy.6210431

Manica, A. K., Tufael, Siddique, M. A. B., Akter, M. F., Islam, M. R. (2023). "In Silico Repurposing of FDA-approved Drugs Targeting Keap1-NRF2 Axis in Hepatocellular Carcinoma for Precision Therapy", Journal of Precision Biosciences, 5(1),1-8,10436 https://doi.org/10.25163/biosciences.5110436

Manica, A. K., Siddique, M. A. B., Tufael, Akter, M. F., Islam, M. R. (2024). "Targeted Drug Repurposing in Precision Oncology Reveals Celecoxib as a GSK-3β Inhibitor in Hepatocellular Carcinoma", Journal of Precision Biosciences, 6(1),1-8,10440 https://doi.org/10.25163/biosciences.6110440

Manica, A. K., Islam, M. R., Siddique, M. A. B., Akter, M. F., Tufael (2024). "Tanshinone IIA as a Promising Natural Inhibitor of the STING Pathway: A Computational Exploration Toward Neuroinflammatory Therapy", Australian Herbal Insight, 7(1),1-8,10441 https://doi.org/10.25163/herbal.7110441

Muhammad, S., & Fatima, N. (2015). In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacognosy Magazine, 11(42), 123. https://doi.org/10.4103/0973-1296.157712

Ponte, L. G. S., Pavan, I. C. B., Mancini, M. C. S., da Silva, L. G. S., Morelli, A. P., Severino, M. B., Bezerra, R. M. N., & Simabuco, F. M. (2021). The Hallmarks of Flavonoids in Cancer. Molecules, 26(7), 2029. https://doi.org/10.3390/molecules26072029

Proença, C., Freitas, M., Ribeiro, D., Rufino, A. T., Fernandes, E., & Ferreira de Oliveira, J. M. P. (2023). The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Medicinal Research Reviews, 43(6), 1878–1945. https://doi.org/10.1002/med.21966

Rahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., ... & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594

Rana, P., Shrama, A., & Mandal, C. C. (2021). Molecular insights into phytochemicals-driven break function in tumor microenvironment. Journal of Food Biochemistry, 45(9). https://doi.org/10.1111/jfbc.13824

Rufa’i, M. S., Abdalla, M., Abdulganiyyu, I. A., Ajala, A., Alahmadi, R. M., Awadalla, M. E., Abdulganiyyu, K., Mahe, A., Gwarzo, Y. S., & Kabir, N. (2025). In-silico design of 3-Methyl-3H-naphtho[1,2,3-de]quinoline-2,7-dione Inhibitors against Tuberculosis via Docking and Dynamics Simulation Techniques, and Pharmacokinetic Evaluation. ASPET Discovery, 100007. https://doi.org/10.1016/j.aspetd.2025.100007

Rufa’i, M. S., Abdulganiyyu, I. A., Ajala, A., Abdalla, M., Alahmadi, R. M., Awadalla, M. E., Abdulganiyyu, K., Mahe, A., Gwarzo, Y. S., & Kabir, N. (2025). In-silico design and evaluation of quinoline-dione derivatives as Mycobacterium tuberculosis DprE1 inhibitors. Discover Molecules, 2(1), 21. https://doi.org/10.1007/s44345-025-00027-7

Samec, M., Liskova, A., Koklesova, L., Mersakova, S., Strnadel, J., Kajo, K., Pec, M., Zhai, K., Smejkal, K., Mirzaei, S., Hushmandi, K., Ashrafizadeh, M., Saso, L., Brockmueller, A., Shakibaei, M., Büsselberg, D., & Kubatka, P. (2021). Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers, 13(1), 130. https://doi.org/10.3390/cancers13010130

Shi, Y., Xia, H., Cheng, X., & Zhang, L. (2021). Genome-wide miRNA analysis and integrated network for flavonoid biosynthesis in Osmanthus fragrans. BMC Genomics, 22(1), 141. https://doi.org/10.1186/s12864-021-07439-y

Siddique, M. A. B., Debnath, A., Ullah, M. S., Amin, M. S., Rahman, A., Mou, M. A., Biswash, M. A. R., Tamim, M. S. B. N., Akter, M. S., Ahmed, B., Numan, A. A., Shabuj, M. M. H. (2025). "Targeting p38 MAPK: Molecular Docking and Therapeutic Insights for Alzheimer’s Disease Management", Journal of Primeasia, 6(1),1-11,10116 https://doi.org/10.25163/primeasia.6110116

Somerset, S. M., & Johannot, L. (2008). Dietary Flavonoid Sources in Australian Adults. Nutrition and Cancer, 60(4), 442–449. https://doi.org/10.1080/01635580802143836

Tufael, Debnath, A., Siddique, M. A. B., Nath, N. D. (2023). "Microbial Therapeutics in Cancer Treatment - Challenges and Opportunities in Breast Cancer Management", Clinical Epidemiology & Public Health, 1(1),1-7,10277 https://doi.org/10.25163/health.1110277

Tufael, Md Mostafizur Rahman et al. (2024). Combined Biomarkers for Early Diagnosis of Hepatocellular Carcinoma, Journal of Angiotherapy, 8(5), 1-12, 9665 https://doi.org/10.25163/angiotherapy.859665

Tufael, Akter, M. F., Islam, M. R., Siddique, M. A. B., Hassan, N., Numan, A. A., Naher, A. A., Shabuj, M. M. H., Manica, A. K., Shaikat, B., Rabbani, T. B. (2025). "Encoded Resistance: Structural Disruption and Signaling Crosstalk Undermine Sorafenib Binding in Mutant VEGFR2-Driven HCC", Paradise, 1(1),1-9,10427 https://doi.org/10.25163/paradise.1110427

Vibhavari, R. J. A., Rao, V., Cheruku, S. P., Kumar, B. H., Maity, S., Nandakumar, K., Kumar, L., Mehta, C. H., Nayak, U., Chamallamudi, M. R., & Kumar, N. (2023). Enhancing temozolomide antiglioma response by inhibiting O6-methylguanine-DNA methyltransferase with selected phytochemicals: in silico and in vitro approach. 3 Biotech, 13(12), 385. https://doi.org/10.1007/s13205-023-03821-7

Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2(7), 489–501. https://doi.org/10.1038/nrc839

Wong, S. C., Kamarudin, M. N. A., & Naidu, R. (2023). Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients, 15(4), 797. https://doi.org/10.3390/nu15040797

Zaryouh, H., De Pauw, I., Baysal, H., Peeters, M., Vermorken, J. B., Lardon, F., & Wouters, A. (2022). Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Medicinal Research Reviews, 42(1), 112–155. https://doi.org/10.1002/med.21806

Zughaibi, T. A., Suhail, M., Tarique, M., & Tabrez, S. (2021). Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. International Journal of Molecular Sciences, 22(22), 12455. https://doi.org/10.3390/ijms222212455


Article metrics
View details
0
Downloads
0
Citations
31
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
31
View
0
Share