Journal of Precision Biosciences
Benchmarking the Omics Revolution: A Comprehensive Meta-Analysis of Methodological Consistency and Clinical Readiness
Samima Nasrin Setu1*, Rifat Bin Amin2, Raihan Mia1
Journal of Precision Biosciences 7 (1) 1-8 https://doi.org/10.25163/biosciences.7110539
Submitted: 13 October 2025 Revised: 09 December 2025 Accepted: 17 December 2025 Published: 19 December 2025
Abstract
Omics technologies—including genomics, transcriptomics, proteomics, and metabolomics—have revolutionized our understanding of complex biological systems, offering unprecedented insights into health, disease progression, and therapeutic responses. This systematic review and meta-analysis synthesize findings from recent studies to evaluate the performance, reproducibility, and clinical applicability of various omics approaches. A comprehensive search of databases was performed, and studies meeting predefined inclusion criteria were analyzed qualitatively and quantitatively. Forest and funnel plot analyses revealed heterogeneity in omics data, influenced by experimental design, sample type, and analytical platforms. Statistical analyses demonstrated that while genomics and transcriptomics consistently provided high-resolution molecular insights, metabolomics and proteomics showed variable reproducibility across studies, often due to technical and biological variability. Bias assessment indicated potential publication bias in studies reporting extreme effect sizes, highlighting the need for standardized protocols and cross-validation. Overall, omics approaches offer powerful tools for biomarker discovery, pathway analysis, and precision medicine applications. However, translating omics findings into clinical practice requires rigorous validation, integration with other datasets, and careful interpretation of statistical results. This review consolidates current evidence, identifies strengths and limitations of omics methodologies, and provides guidance for future research. By offering a meta-analytical perspective, it emphasizes the potential of omics in advancing personalized healthcare while addressing challenges related to data reproducibility, technical variability, and study design.Keywords: Omics; Genomics; Transcriptomics; Proteomics; Metabolomics; Systematic review; Meta-analysis; Biomarker discovery
References
Ayon, N. J. (2023). High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites, 13(5), 625. https://doi.org/10.3390/metabo13050625
Beale, D. J., Kouremenos, K. A., & Palombo, E. A. (2016). Beyond metabolomics: A review of multi-omics-based approaches. In Microbial metabolomics: Applications in clinical, environmental, and industrial microbiology (pp. 289-312). Springer International Publishing. https://doi.org/10.1007/978-3-319-46326-1_10
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
Cunha, B. R. d., Fonseca, L. P., & Calado, C. R. C. (2019). Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 8(2), 45. https://doi.org/10.3390/antibiotics8020045
Dopazo, J. (2014). Genomics and transcriptomics in drug discovery. Drug Discovery Today, 19(2), 126-132. https://doi.org/10.1016/j.drudis.2013.06.003
Du, T., Hu, Y., Ma, C., Yan, X., Zhou, W., & Ma, X. (2018). Skeletal muscle metabolomic analysis to estimate postmortem interval by LC-MS. Forensic Science International, 293, 30-36.
Fang, S., Sun, Y., Liu, F., Li, J., & Guo, Q. (2023). Metabolomics approaches for estimating post-mortem interval using different biological samples: A systematic review. International Journal of Molecular Sciences, 24(13), 11332.
Fernández-Acero, F. J., Amil-Ruiz, F., Durán-Peña, M. J., Carrasco, R., Fajardo, C., Guarnizo, P., Fuentes-Almagro, C., & Vallejo, R. A. (2019). Valorisation of the microalgae Nannochloropsis gaditana biomass by proteomic approach in the context of circular economy. Journal of Proteomics, 193, 239-242. https://doi.org/10.1016/j.jprot.2018.10.015
Fitzpatrick, D., & Walsh, F. (2016). Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiology Ecology, 92(1), fiv168. https://doi.org/10.1093/femsec/fiv168
Francine, P. (2022). Systems biology: New insight into antibiotic resistance. Microorganisms, 10(12), 2362. https://doi.org/10.3390/microorganisms10122362
Gaudêncio, S. P., Bayram, E., Lukic Bilela, L., Cueto, M., Díaz-Marrero, A. R., Haznedaroglu, B. Z., Jimenez, C., Mandalakis, M., Pereira, F., Reyes, F., & Tasdemir, D. (2023). Advanced methods for natural products discovery: Bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation. Marine Drugs, 21(5), 308. https://doi.org/10.3390/md21050308
Goff, A. G., Cloutier, D., Welch, L. M., & Williams, S. J. (2020). Beyond penicillin: Exploring new avenues for antibiotic discovery in the age of antimicrobial resistance. Applied Sciences, 10(13), 4629. https://doi.org/10.3390/app10134629
Handelsman, J. (2009). Metagenetics: Spending our inheritance on the future. Microbial Biotechnology, 2(2), 138 139. https://doi.org/10.1111/j.1751-7915.2009.00090_8.x
Horgan, R. P., & Kenny, L. C. (2011). 'Omic' technologies: Genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13(3), 189-195. https://doi.org/10.1576/toag.13.3.189.27672
Janiszewska, D., Szultka-Mlynska, M., Pomastowski, P., & Buszewski, B. (2022). "Omic" approaches to bacteria and antibiotic resistance identification. International Journal of Molecular Sciences, 23(16), 9601. https://doi.org/10.3390/ijms23179601
Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17(7), 451-459. https://doi.org/10.1038/nrm.2016.25
Karahalil, B. (2016). Overview of systems biology and omics technologies. Current Medicinal Chemistry, 23(37), 4221-4230. https://doi.org/10.2174/0929867323666160926150617
Kwak, J., Kyeong, J., Kim, K., Park, S., & Kim, Y. (2016). Post-mortem interval (PMI) determination: A comparative analysis of liver and heart proteomes in a rat model. Forensic Science International, 266, 55-61.
Liu, X., Ashforth, E., Ren, B., Song, F., Dai, H., Liu, M., Wang, J., Xie, Q., & Zhang, L. (2010). Bioprospecting microbial natural product libraries from the marine environment for drug discovery. Journal of Antibiotics, 63(8), 415-422. https://doi.org/10.1038/ja.2010.56
Ma, S., Jaipalli, S., Larkins-Ford, J., Lohmiller, J., Aldridge, B. B., Sherman, D. R., & Chandrasekaran, S. (2019). Transcriptomic signatures predict regulators of drug synergy and clinical regimen efficacy against tuberculosis. mBio, 10(1), 1-16. https://doi.org/10.1128/mBio.02627-19
Malcangi, G., Patano, A., Guglielmo, M., Sardano, R., Palmieri, G., Di Pede, C., de Ruvo, E., Inchingolo, A. D., Mancini, A., Inchingolo, F., Bordea, I. R., Dipalma, G., & Inchingolo, A. M. (2023). Precision medicine in oral health and diseases: A systematic review. Journal of Personalized Medicine, 13(5), 725. https://doi.org/10.3390/jpm13050725
Nogueira, T., & Botelho, A. (2021). Metagenomics and other omics approaches to bacterial communities and antimicrobial resistance assessment in aquacultures. Antibiotics, 10(7), 787. https://doi.org/10.3390/antibiotics10070787
O'Rourke, A., Beyhan, S., Choi, Y., Morales, P., Chan, A. P., Espinoza, J. L., Dupont, C. L., Meyer, K. J., Spoering, A., Lewis, K., & Keren, S. (2020). Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrobial Agents and Chemotherapy, 64(2), e01207-19. https://doi.org/10.1128/AAC.01207-19
Pereira, F. (2019). Metagenomics: A gateway to drug discovery. In S. N. Meena & M. M. Naik (Eds.), Advances in biological science research (pp. 453-468). Academic Press. https://doi.org/10.1016/B978-0-12-817497-5.00028-8
Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(3), 76. https://doi.org/10.3390/metabo9040076
Secco, L., Palumbi, S., Padalino, P., Grosso, E., Perilli, M., Casonato, M., Cecchetto, G., & Viel, G. (2025). "Omics" and postmortem interval estimation: A systematic review. International Journal of Molecular Sciences, 26(3), 1034. https://doi.org/10.3390/ijms26031034
Swinney, D. C. (2014). Phenotypic vs. target-based drug discovery for first-in-class medicines. Clinical Pharmacology & Therapeutics, 96(3), 299-302. https://doi.org/10.1038/clpt.2012.236
Tiew, P. Y., Meldrum, O. W., & Chotirmall, S. H. (2023). Applying next-generation sequencing and multi-omics in chronic obstructive pulmonary disease. International Journal of Molecular Sciences, 24(3), 2955. https://doi.org/10.3390/ijms24032955
Wang, Z., Soni, V., Marriner, G., Kaneko, T., Boshoff, H. I. M., Barry, C. E., III, & Rhee, K. Y. (2019). Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Proceedings of the National Academy of Sciences, 116(39), 19646-19651. https://doi.org/10.1073/pnas.1907946116
Zampieri, M., Szappanos, B., Buchieri, M. V., Trauner, A., Piazza, I., Picotti, P., Gagneux, S., Borrell, S., Gicquel, B., Lelievre, J., et al. (2018). High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 10(462), 1-13. https://doi.org/10.1126/scitranslmed.aal3973