Journal of Precision Biosciences
Precision sciences | Online ISSN 3064-9226
29
Citations
69.6k
Views
51
Articles
REVIEWS (Open Access)
Advances in CAR T-Cell Engineering and Redirected Immune Effector Cells for Enhanced Solid Tumor Immunotherapy: A Systematic Review
Rifat Bin Amin1*, Samima Nasrin Setu2, Raihan Mia2
Journal of Precision Biosciences 7 (1) 1-8 https://doi.org/10.25163/biosciences.7110540
Submitted: 15 June 2025 Revised: 10 August 2025 Accepted: 18 August 2025 Published: 20 August 2025
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed treatment outcomes for hematologic malignancies, yet its translation to solid tumors remains limited by tumor heterogeneity, immunosuppressive microenvironments, and antigen escape. This systematic review synthesizes current advancements in CAR T engineering, redirected immune-cell platforms, and combinatorial approaches designed to overcome these barriers. Eligible studies were sourced from PubMed and included primary research analyzing CAR T-cell design, novel immune effector cell types, bispecific engagers, or microenvironment-modulating strategies. Extracted variables encompassed CAR constructs, targeted antigens, costimulatory domains, cellular platforms, preclinical outcomes, safety data, and response metrics. Results across the literature demonstrate rapid progress in engineering CAR T cells with enhanced persistence, multi-antigen recognition, and resistance to suppressive signals. Parallel strategies involving CAR-engineered NK cells, macrophages, and γδ T cells show promise in broadening therapeutic applicability beyond classical αβ T cells. Additionally, bispecific antibodies and adaptor-based redirection systems offer flexible targeting and improved safety profiles. Despite encouraging advances, challenges such as on-target off-tumor toxicity, limited trafficking, and the metabolic constraints of solid tumors persist. This review highlights the convergence of genetic engineering, synthetic biology, and immunomodulation as key drivers shaping next-generation CAR T therapy. Continued refinement of these technologies may enable more durable and generalized success in treating solid tumors.
Keywords: CAR T cells; solid tumors; immune engineering; redirected immune cells; bispecific antibodies; tumor microenvironment; cellular immunotherapy
References
Adusumilli, P. S., Cherkassky, L., Villena-Vargas, J., Colovos, C., Servais, E., Plotkin, J., Jones, D. R., & Sadelain, M. (2014). Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science Translational Medicine, 6(261). https://doi.org/10.1126/scitranslmed.3010162
Andreou, T., Neophytou, C., Mpekris, F., & Stylianopoulos, T. (2025). Expanding immunotherapy beyond CAR T cells: Engineering diverse immune cells to target solid tumors. Cancers, 17(17), 2917. https://doi.org/10.3390/cancers17172917
Arndt, C., Feldmann, A., Koristka, S., Schäfer, M., Bergmann, R., Mitwasi, N., Berndt, N., Bachmann, D., Kegler, A., Schmitz, M., et al. (2019). A theranostic PSMA ligand for PET imaging and retargeting of T cells expressing the universal chimeric antigen receptor UniCAR. OncoImmunology, 8(10), 1659095. https://doi.org/10.1080/2162402X.2019.1659095
Bagley, S. J., Logun, M., Fraietta, J. A., Wang, X., Desai, A. S., Bagley, L. J., Nabavizadeh, A., Jarocha, D., Martins, R., Maloney, E., et al. (2024). Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: Phase 1 trial interim results. Nature Medicine, 30(5), 1320-1329. https://doi.org/10.1038/s41591-024-02893-z
Bauman, J. H., & Yen, W. S. (2019). A CAR T-cell therapy for breast cancer. Cancers, 11, 191.
Bielamowicz, K., Fousek, K., Byrd, T. T., Samaha, H., Mukherjee, M., Aware, N., Wu, M.-F., Orange, J. S., Sumazin, P., Man, T.-K., et al. (2018). Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology, 20(4), 506-518. https://doi.org/10.1093/neuonc/nox182
Birkholz, K., Hombach, A., Krug, C., Reuter, S., Kershaw, M., Kampgen, E., Schuler, G., Abken, H., Schaft, N., & Dorrie, J. (2009). Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy, 16(5), 596-604. https://doi.org/10.1038/gt.2008.189
Boccalatte, F., Mina, R., Aroldi, A., Leone, S., Suryadevara, C. M., Placantonakis, D. G., & Bruno, B. (2022). Advances and hurdles in CAR T cell immune therapy for solid tumors. Cancers, 14(20), 5108. https://doi.org/10.3390/cancers14205108
Brown, C. E., Alizadeh, D., Starr, R., Weng, L., Wagner, J. R., Naranjo, A., Ostberg, J. R., Blanchard, M. S., Kilpatrick, J., Simpson, J., et al. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy. New England Journal of Medicine, 375(26), 2561-2569. https://doi.org/10.1056/NEJMoa1610497
Brown, C. E., Badie, B., Barish, M. E., Weng, L., Ostberg, J. R., Chang, W.-C., Naranjo, A., Starr, R., Wagner, J., & Wright, C. (2015). Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clinical Cancer Research, 21(18), 4062-4072. https://doi.org/10.1158/1078-0432.CCR-15-0428
Choi, B. D., Gedeon, P. C., Herndon, J. E., II, Archer, G. E., Reap, E. A., Sanchez-Perez, L., Mitchell, D. A., Bigner, D. D., & Sampson, J. H. (2013). Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody. Cancer Immunology Research, 1(3), 163. https://doi.org/10.1158/2326-6066.CIR-13-0049
Choi, B. D., Yu, X., Castano, A. P., Bouffard, A. A., Schmidts, A., Larson, R. C., Bailey, S. R., Boroughs, A. C., Frigault, M. J., Leick, M. B., et al. (2019). CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 37(9), 1049-1058. https://doi.org/10.1038/s41587-019-0192-1
Chung, H., Jung, H., & Noh, J.-Y. (2021). Emerging approaches for solid tumor treatment using CAR-T cell therapy. International Journal of Molecular Sciences, 22(22), 12126. https://doi.org/10.3390/ijms222212126
Di Stasi, A., Tey, S. K., Dotti, G., Fujita, Y., Kennedy-Nasser, A., Martinez, C., Straathof, K., Liu, E., Durett, A. G., Grilley, B., et al. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. New England Journal of Medicine, 365(18), 1673-1683. https://doi.org/10.1056/NEJMoa1106152
Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Sherry, R., Restifo, N. P., Hubicki, A. M., et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 298(5594), 850-854. https://doi.org/10.1126/science.1076514
Ercilla-Rodríguez, P., Sánchez-Díez, M., Alegría-Aravena, N., Quiroz-Troncoso, J., Gavira-O'Neill, C. E., & González-Martos, R. (2024). CAR-T lymphocyte-based cell therapies for solid tumors. Frontiers in Immunology, 15, 1333150. https://doi.org/10.3389/fimmu.2024.1333150
Fedorov, V. D., Themeli, M., & Sadelain, M. (2013). PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs). Science Translational Medicine, 5(215), 215ra172. https://doi.org/10.1126/scitranslmed.3006597
Feldmann, A., Arndt, C., Bergmann, R., Loff, S., Cartellieri, M., Bachmann, D., Aliperta, R., Hetzenecker, M., Ludwig, F., Albert, S., et al. (2017). Retargeting of T lymphocytes using UniCAR technology. Oncotarget, 8(18), 31368-31385. https://doi.org/10.18632/oncotarget.15572
Feucht, J., Sun, J., Eyquem, J., Ho, Y. J., Zhao, Z., Leibold, J., Dobrin, A., Cabriolu, A., Hamieh, M., & Sadelain, M. (2019). Calibration of CAR activation potential directs T cell fates. Nature Medicine, 25(1), 82-88. https://doi.org/10.1038/s41591-018-0290-5
Gwadera, J., Grajewski, M., Chowaniec, H., Gucia, K., Michon, J., Mikulicz, Z., Knast, M., Pujanek, P., Tolkacz, A., Murawa, A., et al. (2025). Can we use CAR-T cells to overcome immunosuppression in solid tumours? Biology, 14(8), 1035. https://doi.org/10.3390/biology14081035
Hatae, R., Kyewalabye, K., Yamamichi, A., Chen, T., Phyu, S., Chuntova, P., Nejo, T., Levine, L. S., Spitzer, M. H., & Okada, H. (2024). Enhancing CAR-T cell metabolism for improved antitumor efficacy. JCI Insight, 9(7), e177141. https://doi.org/10.1172/jci.insight.177141
Hegde, M., Mukherjee, M., Grada, Z., Pignata, A., Landi, D., Navai, S. A., Wakefield, A., Fousek, K., Bielamowicz, K., Chow, K. K., et al. (2016). Tandem CAR T cells targeting HER2 and IL13Rα2. Journal of Clinical Investigation, 126(8), 3036-3052. https://doi.org/10.1172/JCI83416
Kershaw, M. H., Westwood, J. A., Parker, L. L., Wang, G., Eshhar, Z., Mavroukakis, S. A., White, D. E., Wunderlich, J. R., Canevari, S., Rogers-Freezer, L., et al. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research, 12(20), 6106-6115. https://doi.org/10.1158/1078-0432.CCR-06-1183
Klampatsa, A., Haas, A. R., Moon, E. K., & Albelda, S. M. (2017). CAR T cell therapy for malignant pleural mesothelioma. Cancers, 9(9), 115. https://doi.org/10.3390/cancers9090115
Kyte, J. A. (2022). Strategies for improving the efficacy of CAR T cells in solid cancers. Cancers, 14(3), 571. https://doi.org/10.3390/cancers14030571
Liao, Q., He, H., Mao, Y., Ding, X., Zhang, X., & Xu, J. (2020). Engineering T cells with hypoxia-inducible CAR (HiCAR). Biomarker Research, 8(1), 56. https://doi.org/10.1186/s40364-020-00238-9
Maher, J., & Davies, D. M. (2023). CAR-based immunotherapy of solid tumours-A clinically based review. Biology, 12(2), 287. https://doi.org/10.3390/biology12020287
Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following anti-ERBB2 CAR T cells. Molecular Therapy, 18(4), 843-851. https://doi.org/10.1038/mt.2010.24
Nguyen, D. T., Ogando-Rivas, E., Liu, R., Wang, T., Rubin, J., Jin, L., Tao, H., Sawyer, W. W., Mendez-Gomez, H. R., Cascio, M., et al. (2022). CAR T cell locomotion in solid tumor microenvironment. Cells, 11(12), 1974. https://doi.org/10.3390/cells11121974
O'Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., Martinez-Lage, M., Brem, S., Maloney, E., Shen, A., et al. (2017). EGFRvIII-directed CAR T cells in recurrent glioblastoma. Science Translational Medicine, 9(399), eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984
Parkhurst, M. R., Yang, J. C., Langan, R. C., Dudley, M. E., Nathan, D. A., Feldman, S. A., Davis, J. L., Morgan, R. A., Merino, M. J., Sherry, R. M., et al. (2011). T cells targeting CEA mediate regression but induce colitis. Molecular Therapy, 19(3), 620-626. https://doi.org/10.1038/mt.2010.272
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.
Picheta, N., Piekarz, J., Danilowska, K., Szklener, K., & Mandziuk, S. (2025). CAR-T in the treatment of solid tumors-A review. International Journal of Molecular Sciences, 26(19), 9486. https://doi.org/10.3390/ijms26199486
Posey, A. D., Jr., Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., Stone, J. D., Madsen, T. D., Schreiber, K., Haines, K. M., et al. (2016). Engineered CAR T cells targeting MUC1 Tn-glycoform. Immunity, 44(6), 1444-1454. https://doi.org/10.1016/j.immuni.2016.05.014
Ramakrishna, S., Highfill, S. L., Walsh, Z., Nguyen, S. M., Lei, H., Shern, J. F., Qin, H., Kraft, I. L., Stetler-Stevenson, M., Yuan, C. M., et al. (2019). Modulation of target antigen density improves CAR T-cell functionality. Clinical Cancer Research, 25(17), 5329-5341. https://doi.org/10.1158/1078-0432.CCR-18-3784
Rojas-Quintero, J., Díaz, M. P., Palmar, J., Galan-Freyle, N. J., Morillo, V., Escalona, D., González-Torres, H. J., Torres, W., Navarro-Quiroz, E., Rivera-Porras, D., et al. (2024). CAR T cells in solid tumors: Overcoming obstacles. International Journal of Molecular Sciences, 25(8), 4170. https://doi.org/10.3390/ijms25084170
Schuberth, P. C., Hagedorn, C., Jensen, S. M., Gulati, P., van den Broek, M., Mischo, A., Soltermann, A., Jungel, A., Marroquin Belaunzaran, O., Stahel, R., et al. (2013). Treatment of malignant pleural mesothelioma with FAP-specific T cells. Journal of Translational Medicine, 11, 187. https://doi.org/10.1186/1479-5876-11-187
Smirnov, S., Zaritsky, Y., Silonov, S., Gavrilova, A., & Fonin, A. (2025). Advancing CAR-T therapy for solid tumors. Biomolecules, 15(10), 1407. https://doi.org/10.3390/biom15101407
Vitanza, N. A., Johnson, A. J., Wilson, A. L., Brown, C., Yokoyama, J. K., Kunkele, A., Chang, C. A., Rawlings-Rhea, S., Huang, W., Seidel, K., et al. (2021). Locoregional infusion of HER2-specific CAR T cells in CNS tumors. Nature Medicine, 27(9), 1544-1552. https://doi.org/10.1038/s41591-021-01404-8
Wang, L. C., Lo, A., Scholler, J., Sun, J., Majumdar, R. S., Kapoor, V., Antzis, M., Cotner, C. E., Johnson, L. A., Durham, A. C., et al. (2014). Targeting fibroblast activation protein with CAR T cells. Cancer Immunology Research, 2(2), 154-166. https://doi.org/10.1158/2326-6066.CIR-13-0027
White, L. G., Goy, H. E., Rose, A. J., & McLellan, A. D. (2022). Controlling cell trafficking in CAR T and NK cell therapy of solid tumours. Cancers, 14(4), 978. https://doi.org/10.3390/cancers14040978
Article metrics
View details
0
Downloads
0
Citations
17
Views
0
Save
Save
0
Citation
Citation
17
View
View
0
Share
Share