References
Abbasian Ardakani, A., Acharya, U. R., Habibollahi, S., & Mohammadi, A. (2021). COVIDiag: A clinical CAD system to diagnose COVID-19 pneumonia based on CT findings. European Radiology, 31, 121–130. https://doi.org/10.1007/s00330-020-07087-y
Agrebi, S., & Larbi, A. (2020). Application of Artificial Intelligence in Infectious Diseases. In D. Barh (Ed.), Artificial intelligence in precision health (pp. 415–438). Academic Press. https://doi.org/10.1016/B978-0-12-817133-2.00018-5
Alali, Y., Harrou, F., & Sun, Y. (2022). A proficient approach to forecasting COVID-19 spread via optimized dynamic machine learning models. Scientific Reports, 12, 2467. https://doi.org/10.1038/s41598-022-06218-3
Ali, S. T., Lau, Y. C., Shan, S., Ryu, S., Du, Z., Wang, L., et al. (2022). Prediction of upcoming global infection burden of influenza seasons after relaxation of public health and social measures during the COVID-19 pandemic: A modelling study. The Lancet Global Health, 10(11), e1612–e1622. https://doi.org/10.1016/S2214-109X(22)00358-8
Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in chronic disease diagnosis. Journal of Personalized Medicine, 10(2), 21. https://doi.org/10.3390/jpm10020021
Caskey, J., McConnell, I. L., Oguss, M., Dligach, D., Kulikoff, R., Grogan, B., et al. (2022). Identifying COVID-19 outbreaks from contact-tracing interview forms for public health departments: Development of a natural language processing pipeline. JMIR Public Health and Surveillance, 8, e36119. https://doi.org/10.2196/36119
Chen, M., & Decary, M. (2020). Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum, 33(1), 10–18. https://doi.org/10.1177/0840470419873123
Danielle, R., & Muin, K. (2022). Artificial intelligence in medicine and public health: Prospects and challenges beyond the pandemic. Genomics and Precision Health, Centers for Disease Control and Prevention, 1–7. https://doi.org/10.1109/ICCTCT.2018.8550857
Davenport, T., & Kalakota, R. (2019). The Potential for Artificial Intelligence in Healthcare Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Desai, A. N., Kraemer, M. U., Bhatia, S., Cori, A., Nouvellet, P., Herringer, M., et al. (2019). Real-time epidemic forecasting: Challenges and opportunities. Health Security, 17(4), 268–275. https://doi.org/10.1089/hs.2019.0022
Devaraj, J., Elavarasan, R. M., Pugazhendhi, R., Shafiullah, G. M., Ganesan, S., Jeysree, A. K., et al. (2021). Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Results in Physics, 21, 103817. https://doi.org/10.1016/j.rinp.2021.103817
Dinesh, K. G., Arumugaraj, K., Santhosh, K. D., & Mareeswari, V. (2018). Prediction of cardiovascular disease using machine learning algorithms. In 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICCTCT.2018.8551014
Fisher, S., & Rosella, L. C. (2022). Priorities for successful use of artificial intelligence by public health organizations: A literature review. BMC Public Health, 22, 2146. https://doi.org/10.1186/s12889-022-14422-z
Garg, P. K. (2021). Overview of artificial intelligence. In L. Sharma & P. K. Garg (Eds.), Artificial intelligence (pp. 3–18). Chapman and Hall/CRC. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003140351-2/overview-artificial-intelligence-pradeep-kumar-garg
Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Han, Z., Wei, B., Hong, Y., Li, T., Cong, J., Zhu, X., et al. (2020). Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Transactions on Medical Imaging, 39, 2584–2594. https://doi.org/10.1109/TMI.2020.2996256
Hasan, M. M., Islam, M. U., Sadeq, M. J., Fung, W. K., & Uddin, J. (2023). Review on the evaluation and development of artificial intelligence for COVID-19 containment. Sensors, 23(1), 527. https://doi.org/10.3390/s23010527
Hussain, Z., Sheikh, Z., Tahir, A., Dashtipour, K., Gogate, M., Sheikh, A., et al. (2022). Artificial intelligence–enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational study. JMIR Public Health and Surveillance, 8, e32543. https://doi.org/10.2196/32543
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in healthcare: Past, present, and future. Stroke and Vascular Neurology, 2, 230–243. https://doi.org/10.1136/svn-2017-000101
Johnson, A. (2020, March 13). How Artificial Intelligence Is Aiding the Fight Against Coronavirus, Center for Data Innovation. https://datainnovation.org/2020/03/howartificial-intelligence-is-aiding-the-fight-againstcoronavirus/
Kakhi, K., Alizadehsani, R., Kabir, H. D., Khosravi, A., Nahavandi, S., & Acharya, U. R. (2022). The internet of medical things and artificial intelligence: Trends, challenges, and opportunities. Biocybernetics and Biomedical Engineering, 42(3), 749–771. https://doi.org/10.1016/j.bbe.2022.05.008
Ke, Y.-Y., Peng, T.-T., Yeh, T.-K., Huang, W.-Z., Chang, S.-E., Wu, S.-H., et al. (2020). Artificial intelligence approach to fighting COVID-19 with repurposing drugs. Biomedicine Journal, 43, 355–362. https://doi.org/10.1016/j.bj.2020.05.001
Lee, D., & Yoon, S. N. (2021). Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International Journal of Environmental Research and Public Health, 18(1), 271. https://doi.org/10.3390/ijerph18010271
Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194), 20200209. https://doi.org/10.1098/rsta.2020.0209
Malik, Y. S., Sircar, S., Bhat, S., Ansari, M. I., Pande, T., Kumar, P., et al. (2021). How artificial intelligence may help the COVID-19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 31(1), e2205. https://doi.org/10.1002/rmv.2205
Martin-Moreno, J. M., Alegre-Martinez, A., Martin-Gorgojo, V., Alfonso-Sanchez, J. L., Torres, F., & Pallares-Carratala, V. (2022). Predictive models for forecasting public health scenarios: Practical experiences applied during the first wave of the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 19(9), 5546. https://doi.org/10.3390/ijerph19095546
Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., et al. (2022). Legal and ethical considerations in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322
Naudé, W. (2020). Artificial intelligence vs COVID-19: Limitations, constraints, and pitfalls. AI & Society, 35, 761–765. https://doi.org/10.1007/s00146-020-00978-0
Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial intelligence is transforming the future of healthcare. The American Journal of Medicine, 132(7), 795–801. https://doi.org/10.1016/j.amjmed.2019.01.017
Pramod, A., Naicker, H. S., & Tyagi, A. K. (2021). Machine learning and deep learning: Open issues and future research directions for the next 10 years. In Computational analysis and deep learning for medical care: Principles, methods, and applications (pp. 463–490). Wiley.
Prosperi, M., Min, J. S., Bian, J., & Modave, F. (2018). Big Data Hurdles in Precision Medicine and Precision Public Health. BMC Medical Informatics and Decision Making, 18, 1–15. https://doi.org/10.1186/s12911-018-0719-2
Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28, 31–38. https://doi.org/10.1038/s41591-021-01614-0
Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications, and research directions. SN Computer Science, 2, 420. https://doi.org/10.1007/s42979-021-00815-1
Sanchez, D. & Slovacek, Hannah & Wang, Run. (2024). Shaping the future of men's sexual health: How artificial intelligence can assist in the management and treatment of erectile dysfunction. UroPrecision. 2. 10.1002/uro2.31.
Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A. T., & Alinejad-Rokny, H. (2021). A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics, 113, 103627. https://doi.org/10.1016/j.jbi.2020.103627
Smith, C. D., & Mennis, J. (2020). Incorporating geographic information science and technology in response to the COVID-19 pandemic. Preventing Chronic Disease, 17, E58. https://doi.org/10.5888/pcd17.200246
Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: Opportunities and risks for the future. Gaceta Sanitaria, 35, S67–S70. https://doi.org/10.1016/j.gaceta.2020.12.019
Tufael, Atiqur Rahman Sunny et al. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare, 4(1), 1-5, 9798
Tufael & Atikur Rahman Sunnay (2022). Transforming Healthcare with Artificial Intelligence: Innovations, Applications, and Future Challenges, Journal of Primeasia, 3(1), 1–6, 9802
Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of the COVID-19 pandemic using machine learning and cloud computing. Internet of Things, 11, 100222. https://doi.org/10.101/10.1016/j.iot.2020.100222
Zarei, Mahdi & Mamaghani, Hamid & Abbasi, A. & Hosseini, Mohammad-Salar. (2024). Application of artificial intelligence in medical education: A review of benefits, challenges, and solutions. Medicina Clínica Práctica. 7. 10.1016/j.mcpsp.2023.100422.