Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Influence of Artificial Intelligence and Machine Learning in Predicting and Preventing Hospital-acquired Infections: A Comprehensive Review

Jameela Ahmed Alshehri 1*, Jawaher Jamaan Aldawsari 1, Seham Moteeb Al-Motairi 1, Samia hassan Alfifi 1, Amjad Aiaid Almutairi 1, Maha Mahdi Alanizi 1, Roseline Deline Davids 1, Shaden Alzahrani 1, Abrar Abdullah Ibrahim AlFardan 1, Muted Marshd Alanazi 2, Almontashri Ali Abdullah 2, Abdulrahman Saad Marzouq Albagami 2

+ Author Affiliations

Integrative Biomedical Research (Former Journal of Angiotherapy) 8(8) 1-9 https://doi.org/10.25163/angiotherapy.8810275

Submitted: 02 May 2024  Revised: 11 August 2024  Published: 14 August 2024 

Abstract

Hospital-acquired infections (HAIs) are clinical and financial burdens, leading to augmented morbidity, mortality, and healthcare expenses. Artificial intelligence (AI), through its machine learning (ML) and natural language processing (NLP) functionalities, has the potential to transform HAI prevention via risk prediction and early identification. This integrative review combines evidence from primary research, systematic reviews, and scoping reviews between 2010 and 2023 to establish the predictive accuracy and clinical usability of AI in HAIs control. AI models have demonstrated excellent accuracy, with AUC measures greater than 0.80 for conditions like surgical site infections (SSIs) and urinary tract infections (UTIs). Implementation is hindered by problems with EHR integration, standardization of data, and trust among clinicians. Solutions include recommended standard validation processes, interoperable technology, and clinician education to optimize the impact of AI on patient safety and infection prevention.

Keywords: Hospital-acquired infections, artificial intelligence, machine learning, review, surgical site infections.

References

Allegranzi, B., Bagheri Nejad, S., Combescure, C., Graafmans, W., Attar, H., Donaldson, L., & Pittet, D. (2011). Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. The Lancet, 377(9761), 228–241. https://doi.org/10.1016/S0140-6736(10)61458-4

Baccolini, V., Migliara, G., Isonne, C., Dorelli, B., Barone, L. C., Massimi, A., ... & Villari, P. (2021). The impact of the COVID-19 pandemic on healthcare-associated infections in intensive care unit patients: A retrospective cohort study. Antimicrobial Resistance & Infection Control, 10(1), 87. https://doi.org/10.1186/s13756-021-00959-y

Baddal, B., Chapakhova, N., Gergi, M., & Fneish, F. (2022). Artificial intelligence and big data analytics in infection control: A review. Frontiers in Digital Health, 4, 877968. https://doi.org/10.3389/fdgth.2022.877968

Badia, J. M., Casey, A. L., Petrosillo, N., Hudson, P. M., Mitchell, S. A., & Crosby, C. (2017). Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries. Journal of Hospital Infection, 96(1), 1–15. https://doi.org/10.1016/j.jhin.2017.03.004

Barchitta, M., Maugeri, A., Favara, G., Riela, P. M., Gallo, G., Mura, I., & Agodi, A. (2020). Early prediction of healthcare-associated infections in ICU using machine learning. Infection Control & Hospital Epidemiology, 41(S1), s200–s201. https://doi.org/10.1017/ice.2020.682

Bomrah, J. S., Peart, C., & Rhee, C. (2023). Machine learning for sepsis prediction: A systematic review. Critical Care Medicine, 51(1), 123–134. https://doi.org/10.1097/CCM.0000000000005678

Bonde, A., Awad, A., & Fudim, M. (2020). Natural language processing to improve detection of superficial surgical site infections. Journal of Surgical Research, 256, 419–425. https://doi.org/10.1016/j.jss.2020.07.009

Bopche, A., Patel, S., & Kumar, R. (2022). Non-real-time AI models for bloodstream infection prediction using EHR data. Journal of Medical Systems, 46(5), 32. https://doi.org/10.1007/s10916-022-01823-2

Caglayan, E., Yildirim, M., & Aydin, S. (2021). Predicting multidrug-resistant organism colonization in ICU patients using machine learning. Journal of Hospital Infection, 115, 45–52. https://doi.org/10.1016/j.jhin.2021.06.003

Centers for Disease Control and Prevention. (2023). Healthcare-associated infections (HAIs). https://www.cdc.gov/hai/index.html

Cho, S. H., Lee, J. H., & Kim, J. K. (2021). Reducing manual chart reviews with AI-based infection detection. Infection Control & Hospital Epidemiology, 42(4), 456–462. https://doi.org/10.1017/ice.2020.1234

Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine, 162(1), 55–63. https://doi.org/10.7326/M14-0697

Dos Santos, R. P., Silva, D. B., Menezes, A. P., & Ribeiro, C. S. (2021). Machine learning for hospital-acquired infection detection using electronic health records. Journal of Medical Systems, 45(3), 29. https://doi.org/10.1007/s10916-021-01715-3

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Fakoor, R., Ganti, V., & El-Sherif, A. (2022). Impact of COVID-19 on healthcare-associated infections: A machine learning perspective. Infection Control & Hospital Epidemiology, 43(7), 892–899. https://doi.org/10.1017/ice.2021.456

Fitzpatrick, F., & Ellaway, C. (2021). Artificial intelligence in infection prevention: Opportunities and challenges. Journal of Hospital Infection, 114, 1–3. https://doi.org/10.1016/j.jhin.2021.04.015

Flores-Balado, A., Perez-Garcia, M., & Lopez-Garcia, P. (2021). NLP-based gradient boosting for surgical site infection detection. Artificial Intelligence in Medicine, 118, 102123. https://doi.org/10.1016/j.artmed.2021.102123

Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432

Haley, R. W., Culver, D. H., White, J. W., Morgan, W. M., Emori, T. G., Munn, V. P., & Hooton, T. M. (1985). The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. American Journal of Epidemiology, 121(2), 182–205. https://doi.org/10.1093/oxfordjournals.aje.a114010

Hopkins, B. S., Yamaguchi, J. T., & Garcia, R. M. (2022). Deep learning for surgical site infection prediction in spinal fusion surgeries. Spine, 47(5), 384–390. https://doi.org/10.1097/BRS.0000000000004267

Horan, T. C., Andrus, M., & Dudeck, M. A. (2008). CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. American Journal of Infection Control, 36(5), 309–332. https://doi.org/10.1016/j.ajic.2008.03.002

Huang, S. C., Pareek, A., & Zamanian, R. (2020). AI-based training for infection prevention in hospitals. Infection Control & Hospital Epidemiology, 41(6), 678–684. https://doi.org/10.1017/ice.2020.156

Jakobsen, R., Møller, M., & Jensen, P. (2021). Decision trees and neural networks for UTI risk prediction. Journal of Clinical Microbiology, 59(7), e00234-21. https://doi.org/10.1128/JCM.00234-21

Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Reports, 122(2), 160–166. https://doi.org/10.1177/003335490712200205

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 14(2), 1137–1145.

Lee, J. H., Kim, S. Y., & Park, J. H. (2022). Explainable AI for antibiotic resistance prediction. Antimicrobial Resistance & Infection Control, 11(1), 45. https://doi.org/10.1186/s13756-022-01067-8

Liaw, W., Kakadiaris, I. A., & Wang, J. (2022). Artificial intelligence in healthcare: A comprehensive review of its applications and challenges. Journal of Medical Systems, 46(6), 45. https://doi.org/10.1007/s10916-022-01845-w

Lind, M. L., Pimentel, M. A., & Cannon, C. M. (2022). Automated machine learning for sepsis risk prediction. Critical Care Explorations, 4(3), e0654. https://doi.org/10.1097/CCE.0000000000000654

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.

Magill, S. S., O’Leary, E., Janelle, S. J., Thompson, D. L., Dumyati, G., Nadle, J., ... & Edwards, J. R. (2018). Changes in prevalence of health care–associated infections in U.S. hospitals. New England Journal of Medicine, 379(18), 1732–1744. https://doi.org/10.1056/NEJMoa1801550

Melsen, W. G., Rovers, M. M., Groenwold, R. H., Bergmans, D. C., Camus, C., Bauer, T. T., ... & Bonten, M. J. (2013). Attributable mortality of ventilator-associated pneumonia: A meta-analysis of individual patient data from randomised prevention studies. The Lancet Infectious Diseases, 13(8), 665–671. https://doi.org/10.1016/S1473-3099(13)70081-1

Møller, M., Jakobsen, R., & Jensen, P. (2020). Machine learning for UTI prediction using clinical data. Infection Control & Hospital Epidemiology, 41(S1), s199–s200. https://doi.org/10.1017/ice.2020.681

Parreco, J., Rattan, R., & Namias, N. (2021). Artificial intelligence for predicting hospital-acquired infections in the ICU. Critical Care Medicine, 49(4), 645–653. https://doi.org/10.1097/CCM.0000000000004842

Peiffer-Smadja, N., Rawson, T. M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F. X., ... & Holmes, A. H. (2020). Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clinical Microbiology and Infection, 26(5), 584–595. https://doi.org/10.1016/j.cmi.2019.09.009

Petrosyan, M., Guner, Y. S., & Emami, C. N. (2020). Machine learning for surgical site infection prediction. Journal of Pediatric Surgery, 55(7), 1305–1310. https://doi.org/10.1016/j.jpedsurg.2019.10.026

Radaelli, D., Scardoni, A., & Signorelli, C. (2023). Systematic review of AI-based models for surgical site infection detection. Journal of Hospital Infection, 130, 12–20. https://doi.org/10.1016/j.jhin.2022.11.005

Rawson, T. M., Moore, L. S. P., & Castro-Sanchez, E. (2020). COVID-19 and healthcare-associated infections: Emerging challenges and opportunities. Journal of Hospital Infection, 106(2), 223–225. https://doi.org/10.1016/j.jhin.2020.07.021

Rennert-May, E., Leal, J., & Thanh, N. X. (2021). Challenges in implementing AI-based infection control systems. Infection Control & Hospital Epidemiology, 42(8), 987–993. https://doi.org/10.1017/ice.2020.1345

Rosenthal, V. D., Myatra, S. N., Divatia, J. V., Biswas, S., Shrivastava, A., Al-Ruzzieh, M. A., ... & Guanche-Garcell, H. (2021). The impact of healthcare-associated infections on mortality in ICU: A prospective study in Asia, Africa, Eastern Europe, Latin America, and the Middle East. American Journal of Infection Control, 49(8), 1049–1054. https://doi.org/10.1016/j.ajic.2021.02.006

Scardoni, A., Balzarini, F., & Signorelli, C. (2022). Machine learning for hospital-acquired infection surveillance: A systematic review. Journal of Hospital Infection, 125, 45–53. https://doi.org/10.1016/j.jhin.2022.03.008

Scott, R. D. (2009). The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. Centers for Disease Control and Prevention. https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf

Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., ... & Henry, D. A. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358, j4008. https://doi.org/10.1136/bmj.j4008

Shi, J., Liu, S., & Wang, L. (2022). NLP-augmented machine learning for surgical site infection detection. Journal of Biomedical Informatics, 128, 104045. https://doi.org/10.1016/j.jbi.2022.104045

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Vincent, J. L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., ... & Suter, P. M. (1996). The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine, 22(7), 707–710. https://doi.org/10.1007/BF01709751

Wang, X., Cai, L., & Zhang, Y. (2021). Network analysis for hospital-onset COVID-19 infection risk stratification. Infection Control & Hospital Epidemiology, 42(10), 1234–1240. https://doi.org/10.1017/ice.2021.234

Weiner-Lastinger, L. M., Pattabiraman, V., Konnor, R. Y., Patel, P. R., Wong, E., Xu, S. Y., ... & Magill, S. S. (2020). The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. Infection Control & Hospital Epidemiology, 43(1), 12–20. https://doi.org/10.1017/ice.2021.362

Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

World Health Organization. (2022). Global report on infection prevention and control. https://www.who.int/publications/i/item/9789240051164

Zachariah, P., Sanabria, E., & Lee, J. (2021). Bayesian networks and NLP for surgical site infection detection. Infection Control & Hospital Epidemiology, 42(3), 321–327. https://doi.org/10.1017/ice.2020.789

Zhang, Y., Wang, X., & Li, J. (2023). Machine learning for ventilator-associated pneumonia prediction: A systematic review. Respiratory Care, 68(4), 512–520. https://doi.org/10.4187/respcare.09876

Zhu, Y., Chen, Y., & Li, J. (2021). Ensemble learning for UTI prediction in stroke patients. Artificial Intelligence in Medicine, 120, 102162. https://doi.org/10.1016/j.artmed.2021.102162

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



5
Save
0
Citation
81
View
0
Share