A Comprehensive Study on the Applications of Artificial Intelligence in Business, Engineering, and Cancer Detection
Md Zubayer Islam1*, Hasnat Karim2, Md. Fatin2
Journal of Primeasia 6(1) 1-7 https://doi.org/10.25163/primeasia.6110282
Submitted: 03 March 2025 Revised: 07 May 2025 Published: 10 May 2025
This study demonstrated AI’s transformative impact across business, engineering, and healthcare, emphasizing ethical integration for sustainable innovation.
Abstract
The world is experiencing intelligent automation, and better decision-making as a result of enabling operational efficiency, which is subsequently transforming various sectors. This critical review dives deep into the glaring applications of artificial intelligence across business, engineering and insightful cancer detection. In the business world, we have AI technologies transforming operations through automation of customer service, targeted and prescriptive marketing, and logistics optimization. Virtual Assistants and Chat Bots powered by AI can perform almost 80% of the repetitive and mundane tasks. This leads to skyrocketing Customer Satisfaction Improvements (CSI) surpassing 80% and operational efficiency improvements of 30% to 50%. Machine learning is also assisting in boosting conversion rates with personalized marketing strategies and prediction analytics. With the advancement of smart manufacturing, predictive maintenance and design, AI is further advancing engineering. These applications aid in reducing equipment failure rates up to 40% and productivity improvements above 30%.AI systems enable real-time monitoring and inspection anomalies, particularly in manufacturing, aerospace, and civil infrastructure. In healthcare, especially in oncology, AI offers the most benefit in the early detection and diagnosis of cancer. Convolutional neural networks (CNNs) have achieved between 90% and 95% accuracy in diagnostics which results in improved outcomes due to timely interventions and personalized treatment through advanced planning. This review highlights the updated advancements available through data and analyzes the impact of AI implementation within these areas, focusing on answering how AI frameworks can be developed to properly aide social needs to ensure better economic opportunities through sustainable growth.
Keywords: Artificial Intelligence, AI in Business, Predictive Maintenance, Cancer Detection, Smart Manufacturing.
References
Aftab, M., Mehmood, F., Zhang, C., Nadeem, A., Dong, Z., Jiang, Y., & Liu, K. (2025, January 26). AI in Oncology: Transforming Cancer Detection through Machine Learning and Deep Learning Applications. arXiv.org. https://arxiv.org/abs/2501.15489
Abdullah, M. S., Tasnim, K., Karim, M. Z., & Hasan, R. (2025). Improving market competitiveness using the use of artificial intelligence in strategic business decisions. Business & Social Sciences, 3(1), 1–9. https://doi.org/10.25163/business.3110213
AI and the Future of Work: Preparing the Workforce for Technological Shifts and Skill Evolution. (2024, April 18). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10616486
Bashir, M. S., Hossian, M., Uddin, M. K. M., Sayem, M. A., Sultana, A., Rana, F. A., Akter, T., Das, N., Rana, M. S., & Das, S. S. (2025). Association between hepatocellular carcinoma and diabetes mellitus. Journal of Primeasia, 6(1), 1–7. https://doi.org/10.25163/primeasia.6110193
Bender, M., Connelly, C. D., & Brown, C. (2012). Interdisciplinary collaboration: the role of the clinical nurse leader. Journal of Nursing Management, 21(1), 165–174. https://doi.org/10.1111/j.1365-2834.2012.01385.x
Bashir, M. S., Sayem, M. A., Das, S. S., Das, N., Sultana, A., Rahman, M., Shamsuzzaman, M., Paul, P., Hossian, M., & Uddin, M. K. M. (2025). High viral load is a risk factor for hepatocellular carcinoma: Clinical and laboratory insights from a cross-sectional study. Integrative Biomedical Research (Former Journal of Angiotherapy), 9(1), 1–8. https://doi.org/10.25163/angiotherapy.9110219
Byrne, M. F., Chapados, N., Soudan, F., Oertel, C., Pérez, M. L., Kelly, R., Iqbal, N., Chandelier, F., & Rex, D. K. (2017). Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut, 68(1), 94–100. https://doi.org/10.1136/gutjnl-2017-314547
Casheekar, A., Lahiri, A., Rath, K., Prabhakar, K. S., & Srinivasan, K. (2024). A contemporary review on chatbots, AI-powered virtual conversational agents, ChatGPT: Applications, open challenges and future research directions. Computer Science Review, 52, 100632. https://doi.org/10.1016/j.cosrev.2024.100632
Corporate Agility and AI: Enhancing adaptive strategies for a dynamic technological landscape. (2024, May 14). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10617073
Daneshjou, R., Smith, M. P., Sun, M. D., Rotemberg, V., & Zou, J. (2021). Lack of transparency and potential bias in artificial intelligence data sets and algorithms. JAMA Dermatology, 157(11), 1362. https://doi.org/10.1001/jamadermatol.2021.3129
Das, S. S., Hossain, M. S., Sultana, A., Rana, F. A., Hossen, A., Maowla, M. S., Uddin, M. K. M., Sayem, M. A., Hossian, M., & Bashir, M. S. (2025). The influence of chronic kidney disease on hepatocellular carcinoma. Journal of Primeasia, 6(1), 1–8. https://doi.org/10.25163/primeasia.6110204
Duesterberg, T. J. (2023). China's Economic Weakness and Challenge to the Bretton Woods System: How Should the US Respond?. Hudson Institute.
ECONOMIC IMPACT OF ARTIFICIAL INTELLIGENCE. (2024). Questa Soft. https://www.ceeol.com/search/article-detail?id=1223340
Ferrara, E. (2024). The Butterfly Effect in artificial intelligence systems: Implications for AI bias and fairness. Machine Learning With Applications, 15, 100525. https://doi.org/10.1016/j.mlwa.2024.100525
Gruetzemacher, R., & Whittlestone, J. (2021). The transformative potential of artificial intelligence. Futures, 135, 102884. https://doi.org/10.1016/j.futures.2021.102884
Haenssle, H., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., Hassen, A. B. H., Thomas, L., Enk, A., Uhlmann, L., Alt, C., Arenbergerova, M., Bakos, R., Baltzer, A., Bertlich, I., Blum, A., Bokor-Billmann, T., Bowling, J., . . . Zalaudek, I. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), 1836–1842. https://doi.org/10.1093/annonc/mdy166
Hossain, M. M., Roy, A., & Nahiduzzaman, M. (2025). Modernizing textile industry operations with artificial intelligence. Applied IT & Engineering, 3(1), 1–8. https://doi.org/10.25163/engineering.3110230
Hasan, R., Abdullah, M. S., Tasnim, K., & Karim, M. Z. (2025). Artificial intelligence in digital marketing: Enhancing personalization and consumer engagement. Business & Social Sciences, 3(1), 1–9. https://doi.org/10.25163/business.3110209
Hossian, M., Hasan, M. M., Sultana, A., Das, S. S., Paul, P., Shamsuzzaman, M., Rahman, M., Uddin, M. K. M., Sayem, M. A., & Bashir, M. S. (2024). Potential role of Helicobacter pylori infection in hepatocellular carcinoma: A clinical and laboratory-based study. Integrative Biomedical Research (Former Journal of Angiotherapy), 8(12), 1–9. https://doi.org/10.25163/angiotherapy.81210217
Innovations, F. J. I. Y. O. T. A. (2025b). Improving customer service operations through the implementation of artificial intelligence tools. Osuva. https://osuva.uwasa.fi/handle/10024/19438
Islam, M. R., Yesmin, T., Prapty, A. N., Biswash, M. A. R., & Rashid, M. H. O. (2024). Natural environmental sources of resveratrol and its therapeutic role in cancer prevention. Australian Herbal Insight, 7(1), 1–11. https://doi.org/10.25163/ahi.719931
Karpunina, E. K., Dedov, S. V., Kholod, M. V., Ponomarev, S. V., & Gorlova, E. A. (2020). Artificial intelligence and its impact on economic Security: Trends, estimates and forecasts. In Lecture notes in networks and systems (pp. 213–225). https://doi.org/10.1007/978-3-030-47945-9_23
Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2022). Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI And Ethics, 2(4), 553–577. https://doi.org/10.1007/s43681-021-00132-6
Krishnan, C., & Mariappan, J. (2024). “The AI Revolution in E-Commerce: Personalization and Predictive Analytics.” In Studies in computational intelligence (pp. 53–64). https://doi.org/10.1007/978-3-031-55615-9_4
Kumar, J. H., & Ramakrishnan, R. (2024). Artificial Intelligence-Enabled Predictive Maintenance for the Resilient Manufacturing: Current applications and challenges. In Lecture notes on multidisciplinary industrial engineering (pp. 281–290). https://doi.org/10.1007/978-981-97-4700-9_27
Licardo, J. T., Domjan, M., & Orehovacki, T. (2024). Intelligent Robotics—A systematic review of emerging technologies and trends. Electronics, 13(3), 542. https://doi.org/10.3390/electronics13030542
Mimmo, S. S., Roy, A., & Billal, S. A. (2025). Integrating artificial intelligence across the fashion value chain: AI transforming design, production, and consumer experience. Applied IT & Engineering, 3(1), 1–10. https://doi.org/10.25163/engineering.3110210
Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management. Logistics, 8(3), 73. https://doi.org/10.3390/logistics8030073
Patel, R. (2024). Implementing AI based quality inspection system to improve quality management system performance. Theseus. https://www.theseus.fi/handle/10024/873927
Roy, A., & Ahmed, M. J. (2025). Tech-driven fashion: Navigating the opportunities and challenges of digitalization. Applied IT & Engineering, 3(1), 1–10. https://doi.org/10.25163/engineering.10208
Sarkar, B., & Paul, R. K. (2025). AI for Advanced Manufacturing and Industrial Applications. https://doi.org/10.1007/978-3-031-86091-1
Sarker, I. H. (2021). Deep Learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6). https://doi.org/10.1007/s42979-021-00815-1
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001
Sufyan, M., Shokat, Z., & Ashfaq, U. A. (2023). Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Computers in Biology and Medicine, 165, 107356. https://doi.org/10.1016/j.compbiomed.2023.107356
Tufael, M., Rana, M. S., Das, S. S., Hossian, M., & Bashir, M. S. (2023). Impact and challenges of digital marketing in health care during the COVID-19 pandemic. Journal of Primeasia, 4(1), 1–4. https://doi.org/10.25163/primeasia.419756
Tasnim, K., Abdullah, M. S., Karim, M. Z., & Hasan, R. (2025). AI-driven innovation, privacy issues, and gaining consumer trust: The future of digital marketing. Business & Social Sciences, 3(1), 1–7. https://doi.org/10.25163/business.3110212
Tufael, M., Rahman, M. M., Upadhye, V. J., Hossain, M. F., & Uddin, N. (2024). Combined biomarkers for early diagnosis of hepatocellular carcinoma. Integrative Biomedical Research (Former Journal of Angiotherapy), 8(5), 1–12. https://doi.org/10.25163/angiotherapy.859665
Uddin, M. K. M., Sultana, A., Rahman, M., Shamsuzzaman, M., Paul, P., Hasan, M. M., Sayem, M. A., Bashir, M. S., Das, S. S., & Hossian, M. (2025). Cardiovascular complications in patients with hepatocellular carcinoma. Integrative Biomedical Research (Former Journal of Angiotherapy), 9(1), 1–8. https://doi.org/10.25163/angiotherapy.9110218
Wahed, M. A., Alqaraleh, M., Alzboon, M. S., & Al-Batah, M. S. (2024). Evaluating AI and machine learning models in breast cancer detection: A review of Convolutional Neural Networks (CNN) and global research trends. LatIA, 3, 117. https://doi.org/10.62486/latia2025117
View Dimensions
View Altmetric
Save
Citation
View
Share