References
Adefarati, T., & Bansal, R. (2019). Energizing renewable energy systems and distribution generation. In Elsevier eBooks (pp. 29–65). https://doi.org/10.1016/b978-0-08-102592-5.00002-8
Afridi, Y. S., Ahmad, K., & Hassan, L. (2022). Artificial intelligence based prognostic maintenance of renewable energy systems: A review of techniques, challenges, and future research directions. International Journal of Energy Research, 46(15), 21619-21642.
AgriFusion: an architecture for IoT and emerging technologies based on a precision agriculture survey. (2021). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9552863/
Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128
Aliyu, M., Hassan, G., Said, S. A., Siddiqui, M. U., Alawami, A. T., & Elamin, I. M. (2018). A review of solar-powered water pumping systems. Renewable and Sustainable Energy Reviews, 87, 61–76. https://doi.org/10.1016/j.rser.2018.02.010
Bardi, U., Asmar, T. E., & Lavacchi, A. (2013). Turning electricity into food: the role of renewable energy in the future of agriculture. Journal of Cleaner Production, 53, 224–231. https://doi.org/10.1016/j.jclepro.2013.04.014
Colombo, E. (2015, September 10). Strategies for access to energy in developing countries: methods and models for off-grid power systems design. https://www.politesi.polimi.it/handle/10589/108857
Dayioglu, M. A., & Turker, U. (2021). Digital Transformation for Sustainable Future - Agriculture 4.0?: A review. Tarim Bilimleri Dergisi. https://doi.org/10.15832/ankutbd.986431
Dhillon, R., & Moncur, Q. (2023). Small-Scale Farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability, 15(21), 15478. https://doi.org/10.3390/su152115478
Falcone, P. M. (2023). Sustainable Energy Policies in Developing Countries: A Review of Challenges and opportunities. Energies, 16(18), 6682. https://doi.org/10.3390/en16186682
Farthing, A., Rosenlieb, E., Steward, D., Reber, T., Njobvu, C., & Moyo, C. (2023). Quantifying agricultural productive use of energy load in Sub-Saharan Africa and its impact on microgrid configurations and costs. Applied Energy, 343, 121131. https://doi.org/10.1016/j.apenergy.2023.121131
Habibi, S., & Engineering, M. (2021). Advanced Pre-processing Techniques for cloud-based Degradation Detection using Artificial Intelligence (AI). https://macsphere.mcmaster.ca/handle/11375/26769
Harper, B., Gajewski, S., Glantz, C., & Others, A. (1996, September 1). Risk constraint measures developed for the outcome-based strategy for tank waste management. INIS – International Nuclear Information System. https://inis.iaea.org/records/mb14d-p1p71
Innovations, F. J. I. Y. O. T. A. (2022, May 31). AI-driven approaches for optimizing the energy efficiency of integrated energy system. Osuva. https://osuva.uwasa.fi/handle/10024/14257
Internet of Things and Wireless sensor networks for smart agriculture Applications: a survey. (2023). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10371307
Kakran, S., & Chanana, S. (2017). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81, 524–535. https://doi.org/10.1016/j.rser.2017.07.045
Karim, M. Z., Hasan, R., Abdullah, M. S., & Tasnim, K. (2023). AIs Exceptional Potential to Significantly Improve the Profitability of Social Media Influencer Marketing. Business & Social Sciences, 1(1), 1-8.
Kumar, N. M., Chand, A. A., Malvoni, M., Prasad, K. A., Mamun, K. A., Islam, F. R., & Chopra, S. S. (2020). Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies, 13(21), 5739.
Liu, Z., Sun, Y., Xing, C., Liu, J., He, Y., Zhou, Y., & Zhang, G. (2022). Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives. Energy and AI, 10, 100195. https://doi.org/10.1016/j.egyai.2022.100195
Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., Sultan, M., & Raza, A. (2023). Renewable energy as an alternative source for energy management in agriculture. Energy Reports, 10, 344–359. https://doi.org/10.1016/j.egyr.2023.06.032
Maraveas, C. (2022). Incorporating artificial intelligence technology in smart greenhouses: Current state of the art. Applied Sciences, 13(1), 14. https://doi.org/10.3390/app13010014
Mor, S., Madan, S., & Prasad, K. D. (2021). Artificial intelligence and carbon footprints: Roadmap for Indian agriculture. Strategic Change, 30(3), 269–280. https://doi.org/10.1002/jsc.2409
Nadeem, T. B., Siddiqui, M., Khalid, M., & Asif, M. (2023). Distributed energy systems: A review of classification, technologies, applications, and policies. Energy Strategy Reviews, 48, 101096. https://doi.org/10.1016/j.esr.2023.101096
Pashang, S., & Weber, O. (2023). AI for Sustainable Finance: Governance Mechanisms for Institutional and Societal Approaches. In Philosophical studies series (pp. 203–229). https://doi.org/10.1007/978-3-031-21147-8_12
Peng, B., Guan, K., Tang, J., Ainsworth, E. A., Asseng, S., Bernacchi, C. J., Cooper, M., Delucia, E. H., Elliott, J. W., Ewert, F., Grant, R. F., Gustafson, D. I., Hammer, G. L., Jin, Z., Jones, J. W., Kimm, H., Lawrence, D. M., Li, Y., Lombardozzi, D. L., . . . Zhou, W. (2020). Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 6(4), 338–348. https://doi.org/10.1038/s41477-020-0625-3
Polymeni, S., Plastras, S., Skoutas, D. N., Kormentzas, G., & Skianis, C. (2023). The Impact of 6G-IoT Technologies on the development of agriculture 5.0: A review. Electronics, 12(12), 2651. https://doi.org/10.3390/electronics12122651
Thapa, N. (2022). AI-driven approaches for optimizing the energy efficiency of integrated energy system.
Vassileva, A. (2022). Green Public-Private Partnerships (PPPs) as an instrument for sustainable development. Journal of World Economy Transformations & Transitions. https://doi.org/10.52459/jowett25221122
Vijayalakshmi, S., Savita, N., & Durgadevi, P. (2023). AI and IoT in Improving Resilience of Smart Energy Infrastructure. In Power systems (pp. 189–213). https://doi.org/10.1007/978-3-031-15044-9_9
Wallace, J. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture Ecosystems & Environment, 82(1–3), 105–119. https://doi.org/10.1016/s0167-8809(00)00220-6
Warner, K. J., & Jones, G. A. (2018). Energy and population in Sub-Saharan Africa: Energy for four billion? Environments, 5(10), 107. https://doi.org/10.3390/environments5100107
Weinand, J. M., Scheller, F., & McKenna, R. (2020). Reviewing energy system modelling of decentralized energy autonomy. Energy, 203, 117817. https://doi.org/10.1016/j.energy.2020.117817
Zahraee, S., Assadi, M. K., & Saidur, R. (2016). Application of artificial intelligence methods for hybrid energy system optimization. Renewable and Sustainable Energy Reviews, 66, 617–630. https://doi.org/10.1016/j.rser.2016.08.028