Epidemiology and public health
REVIEWS   (Open Access)

Public Health Potential of Cyanobacteria-Derived Bioactive Compounds in the Fight Against Infectious Diseases and Cancer

Md Fatin1*, Mst. Shahana Akter2

+ Author Affiliations

Clinical Epidemiology & Public Health 2 (1) 1-8 https://doi.org/10.25163/health.2110276

Submitted: 05 March 2024 Revised: 10 May 2024  Published: 14 May 2024 


Abstract

Cyanobacteria, often referred to as blue-green algae, are tiny photosynthetic microorganisms with remarkable potential in the field of public health. These organisms are known to produce a diverse array of bioactive compounds, including polyketides, peptides, alkaloids, terpenes, and polyphenols, which have demonstrated strong antibacterial, antiviral, and anticancer properties. As the world faces increasing threats from infectious diseases, antibiotic resistance, and cancer, there is an urgent need for innovative and effective treatments. Natural sources like cyanobacteria are gaining attention for their ability to provide novel therapeutic agents. Some of these compounds have already progressed to clinical trials, especially in cancer treatment, showing promising results. Despite these advancements, challenges persist, including the need for thorough toxicity assessments, the development of improved methods for compound isolation, and the creation of scalable production techniques. Overcoming these hurdles is essential to harness the full potential of cyanobacterial metabolites safely. This review highlights the increasing importance of cyanobacteria in addressing significant public health concerns. Through continued research and development, cyanobacteria-derived compounds may offer sustainable and practical solutions for combating infectious diseases and cancer, thereby helping to protect global health and advance medical science in the years to come.

Keywords: Cyanobacteria, Bioactive Compounds, Antimicrobial Resistance (AMR), Anticancer Activity, Natural Therapeutics

References


Abdelhakim, B., Saad, B., Imane, C., Douae, T., Nasreddine, E. O., Naoual, E. M., Naoufal, E. H., Mohamed, E.-S., Asaad, K., Ashraf N. A., K. W., G., L. Chiau, M., Bey Hing, G., & Tarik, A. (2023). Bioactive Substances of Cyanobacteria and Microalgae: Sources, Metabolism, and Insights into Anticancer Mechanisms. Biomedicine & Pharmacotherapy, 170, 115989. https://doi.org/10.1016/j.biopha.2023.115989

Ahmed, S., Alam, W., Aschner, M., Filosa, R., Cheang, W. S., Jeandet, P., Saso, L., & Khan, H. (2023). Marine cyanobacterial peptides in neuroblastoma: Search for better therapeutic options. Cancers, 15(9), 2515. https://doi.org/10.3390/cancers15092515

Al-Nedawe, R. A. D., & Yusof, Z. N. B. (2023). Cyanobacteria as a source of bioactive compounds with anticancer, antibacterial, antifungal, and antiviral activities: A review. Microbial Bioactives, 6(1), Article 2.

Cock, I. E., & Cheesman, M. J. (2023). A review of the antimicrobial properties of cyanobacterial natural products. Molecules, 28(20), 7127. https://doi.org/10.3390/molecules28207127

Costa, M., Costa-Rodrigues, J., Fernandes, M. H., Barros, P., Vasconcelos, V., & Martins, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Marine Drugs, 10(10), 2181–2207. https://doi.org/10.3390/md10102181

Gonder, L. Y., Aydin, B., Ates, Y. C., Parilti, D. N., Acik, L., & Cerci, A. (2023). Antimicrobial, antioxidant, cytotoxic, DNA protective activities, and molecular docking studies of the methanolic extract of Salvia siirtica Kahraman, Celep & Dogan sp. nov. (Lamiaceae). Microbial Bioactives, 6(1), Article 1.

Grabowski, L., Wisniewska, K., Zabinska, M., Konarzewska, M., Zielenkiewicz, M., Rintz, E., Cyske, Z., Gaffke, L., Pierzynowska, K., Mazur-Marzec, H., & Wegrzyn, G. (2024). Cyanobacteria and their metabolites—Can they be helpful in the fight against pathogenic microbes? Blue Biotechnology, 1(4). https://doi.org/10.1186/s44315-024-00003-9BioMed Central

Hanaa Ali Hussein,  Fatin L. Khaphi,  Zahra Kadhum Saeed. Cytotoxicity of bioactive compounds derived from cyanobacteria. INNOSC Theranostics and Pharmacological Sciences 2024, 7(1), 1388. https://doi.org/10.36922/itps.1388

Hussein, H. A., Khaphi, F. L., & Saeed, Z. K. (2024). Cytotoxicity of bioactive compounds derived from cyanobacteria. INNOSC Theranostics and Pharmacological Sciences, 7(1), 1388. https://doi.org/10.36922/itps.1388

Kaloyannidis, P., Hertzberg, M., Webb, K., Zomas, A., Schrover, R., Hurst, M., & et al. (2020). Brentuximab vedotin for the treatment of patients with relapsed or refractory Hodgkin lymphoma after autologous stem cell transplantation. British Journal of Haematology, 188(4), 540–549. https://doi.org/10.1111/bjh.16201

Khalifa, S. A. M., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, M. E., Du, M., Abdel-Daim, M. M., Kai, G.-Y., Al-Hammady, M. A. M., Xiao, J., Guo, Z., & El-Seedi, H. R. (2021). Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19(5), 241. https://doi.org/10.3390/md19050241

Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S.K., Kilpatrick, K.L., Das, G., Kerry, R.G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9), 476. https://doi.org/10.3390/md18090476

Morrison, K., Challita-Eid, P. M., Raitano, A., An, Z., Yang, P., Abad, J. D., et al. (2016). Development of ASG-15ME, a novel antibody–drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Molecular Cancer Therapeutics, 15(6), 1301–1310. https://doi.org/10.1158/1535-7163.MCT-15-0570

Moskowitz, C. H., Fanale, M. A., Shah, B. D., Advani, R. H., Chen, R., Kim, S., & et al. (2015). A Phase 1 study of denintuzumab mafodotin (SGN-CD19A) in relapsed/refractory B-lineage non-Hodgkin lymphoma. Blood, 126(23), 182. https://doi.org/10.1182/blood.V126.23.182.182

Nawaz, T., Fahad, S., Gu, L., Saud, S., & Zhou, R. (2024). Cyanobacteria: Role in sustainable biomanufacturing and nitrogen fixation. Biofuels, Bioproducts and Biorefining, 18(6), 2132–2155. https://doi.org/10.1002/bbb.2674

Perera, R. M. T. D., Herath, K. H. I. N. M., Sanjeewa, K. K. A., & Jayawardena, T. U. (2023). Recent reports on bioactive compounds from marine cyanobacteria and their potential applications in human health. Life, 13(6), 1411. https://doi.org/10.3390/life13061411MDPI

Petrylak, D. P., Perez, R. P., Zhang, J., Smith, D. C., Ruether, J. D., Sridhar, S. S., et al. (2017). A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): Updated analysis of patients with metastatic urothelial cancer. Journal of Clinical Oncology, 35(15_suppl), 106. https://doi.org/10.1200/JCO.2017.35.15_suppl.106

Prima, M. J., Hassan, M., & Sharma, J. (2023). Novel approaches for combating antibiotic resistance in pathogenic bacteria. Microbial Bioactives, 6(1), 1–18.

Rodrigues, F., Reis, M., Ferreira, L., Grosso, C., Ferraz, R., Vieira, M., Vasconcelos, V., & Martins, R. (2024). The neuroprotective role of cyanobacteria with focus on the anti-inflammatory and antioxidant potential: Current status and perspectives. Molecules, 29(20), 4799. https://doi.org/10.3390/molecules29204799

Rojas, V., Rivas, L., Cárdenas, C., & Guzmán, F. (2020). Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules, 25(24), 5804. https://doi.org/10.3390/molecules25245804

Sabri, S., Mustofa, M. K., Fouad, M. T., & et al. (2024). Comprehensive analysis of CRISPR-Cas systems in microbes and their multifaceted applications. Microbial Bioactives, 7(1), 1–11.

Saghir, S. A. M., & Al Suede, F. S. (2024). Synergistic efficacy and mechanism of probiotics and prebiotics in enhancing health impact. Microbial Bioactives, 7(1), 1–11.

Sainis, I., Fokas, D., Vareli, K., Tzakos, A. G., Kounnis, V., & Briasoulis, E. (2010). Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Marine Drugs, 8(3), 629-657. https://doi.org/10.3390/md8030629

Sultan Ayesh Mohammed Saghir, Fouad Saleh Al Suede. (2024). Synergistic Efficacy and Mechanism of Probiotics and Prebiotics in Enhancing Health Impact, Microbial Bioactives, 7(1), 1–11, 9300

Suriana Sabri, Md Kawsar Mustofa, M. T. Fouad et al. (2024). Comprehensive Analysis of CRISPR-Cas Systems in Microbes and Their Multifaceted Applications, Microbial Bioactives, 7(1), 1-11, 9376

 

Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2020). Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins, 12(1), 12. https://doi.org/10.3390/toxins12010012

Taufiq Nawaz, Shah Fahad, Liping Gu, Shah Saud, Ruanbao Zhou, Cyanobacteria: role in sustainable biomanufacturing and nitrogen fixation, Biofuels, Bioproducts and Biorefining, 10.1002/bbb.2674, 18, 6, (2132-2155), (2024).

Tiwari, A. K., & Tiwari, B. S. (2020). Cyanotherapeutics: An emerging field for future drug discovery. Applied Psychology, 1(1), 44–57. https://doi.org/10.1080/26388081.2020.1744480

Verma, V. A., Pillow, T. H., DePalatis, L., Li, G., Phillips, G. L., Polson, A. G., et al. (2015). The cryptophycins are potent payloads for antibody drug conjugates. Bioorganic & Medicinal Chemistry Letters, 25(4), 864–868. https://doi.org/10.1016/j.bmcl.2014.12.070

Wijewickrama, M., Greene, T., & Cock, I. E. (2023). Therapeutics from cyanobacteria: A review of cyanobacteria-derived compounds as anti-cancer drug leads. Pharmacognosy Reviews, 17(34), 230–246. https://doi.org/10.5530/phrev.2023.17.3

Xie, R., Chen, F., Ma, Y., Hu, W., Zheng, Q., Cao, J., & Wu, Y. (2023). Network pharmacology?based analysis of marine cyanobacteria-derived bioactive compounds for application to Alzheimer’s disease. Frontiers in Pharmacology, 14, 1249632. https://doi.org/10.3389/fphar.2023.1249632

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
24
View
0
Share