References
Abdelhakim, B., Saad, B., Imane, C., Douae, T., Nasreddine, E. O., Naoual, E. M., Naoufal, E. H., Mohamed, E.-S., Asaad, K., Ashraf N. A., K. W., G., L. Chiau, M., Bey Hing, G., & Tarik, A. (2023). Bioactive Substances of Cyanobacteria and Microalgae: Sources, Metabolism, and Insights into Anticancer Mechanisms. Biomedicine & Pharmacotherapy, 170, 115989. https://doi.org/10.1016/j.biopha.2023.115989
Ahmed, S., Alam, W., Aschner, M., Filosa, R., Cheang, W. S., Jeandet, P., Saso, L., & Khan, H. (2023). Marine cyanobacterial peptides in neuroblastoma: Search for better therapeutic options. Cancers, 15(9), 2515. https://doi.org/10.3390/cancers15092515
Al-Nedawe, R. A. D., & Yusof, Z. N. B. (2023). Cyanobacteria as a source of bioactive compounds with anticancer, antibacterial, antifungal, and antiviral activities: A review. Microbial Bioactives, 6(1), Article 2.
Cock, I. E., & Cheesman, M. J. (2023). A review of the antimicrobial properties of cyanobacterial natural products. Molecules, 28(20), 7127. https://doi.org/10.3390/molecules28207127
Costa, M., Costa-Rodrigues, J., Fernandes, M. H., Barros, P., Vasconcelos, V., & Martins, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Marine Drugs, 10(10), 2181–2207. https://doi.org/10.3390/md10102181
Gonder, L. Y., Aydin, B., Ates, Y. C., Parilti, D. N., Acik, L., & Cerci, A. (2023). Antimicrobial, antioxidant, cytotoxic, DNA protective activities, and molecular docking studies of the methanolic extract of Salvia siirtica Kahraman, Celep & Dogan sp. nov. (Lamiaceae). Microbial Bioactives, 6(1), Article 1.
Grabowski, L., Wisniewska, K., Zabinska, M., Konarzewska, M., Zielenkiewicz, M., Rintz, E., Cyske, Z., Gaffke, L., Pierzynowska, K., Mazur-Marzec, H., & Wegrzyn, G. (2024). Cyanobacteria and their metabolites—Can they be helpful in the fight against pathogenic microbes? Blue Biotechnology, 1(4). https://doi.org/10.1186/s44315-024-00003-9BioMed Central
Hanaa Ali Hussein, Fatin L. Khaphi, Zahra Kadhum Saeed. Cytotoxicity of bioactive compounds derived from cyanobacteria. INNOSC Theranostics and Pharmacological Sciences 2024, 7(1), 1388. https://doi.org/10.36922/itps.1388
Hussein, H. A., Khaphi, F. L., & Saeed, Z. K. (2024). Cytotoxicity of bioactive compounds derived from cyanobacteria. INNOSC Theranostics and Pharmacological Sciences, 7(1), 1388. https://doi.org/10.36922/itps.1388
Kaloyannidis, P., Hertzberg, M., Webb, K., Zomas, A., Schrover, R., Hurst, M., & et al. (2020). Brentuximab vedotin for the treatment of patients with relapsed or refractory Hodgkin lymphoma after autologous stem cell transplantation. British Journal of Haematology, 188(4), 540–549. https://doi.org/10.1111/bjh.16201
Khalifa, S. A. M., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, M. E., Du, M., Abdel-Daim, M. M., Kai, G.-Y., Al-Hammady, M. A. M., Xiao, J., Guo, Z., & El-Seedi, H. R. (2021). Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19(5), 241. https://doi.org/10.3390/md19050241
Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S.K., Kilpatrick, K.L., Das, G., Kerry, R.G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9), 476. https://doi.org/10.3390/md18090476
Morrison, K., Challita-Eid, P. M., Raitano, A., An, Z., Yang, P., Abad, J. D., et al. (2016). Development of ASG-15ME, a novel antibody–drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Molecular Cancer Therapeutics, 15(6), 1301–1310. https://doi.org/10.1158/1535-7163.MCT-15-0570
Moskowitz, C. H., Fanale, M. A., Shah, B. D., Advani, R. H., Chen, R., Kim, S., & et al. (2015). A Phase 1 study of denintuzumab mafodotin (SGN-CD19A) in relapsed/refractory B-lineage non-Hodgkin lymphoma. Blood, 126(23), 182. https://doi.org/10.1182/blood.V126.23.182.182
Nawaz, T., Fahad, S., Gu, L., Saud, S., & Zhou, R. (2024). Cyanobacteria: Role in sustainable biomanufacturing and nitrogen fixation. Biofuels, Bioproducts and Biorefining, 18(6), 2132–2155. https://doi.org/10.1002/bbb.2674
Perera, R. M. T. D., Herath, K. H. I. N. M., Sanjeewa, K. K. A., & Jayawardena, T. U. (2023). Recent reports on bioactive compounds from marine cyanobacteria and their potential applications in human health. Life, 13(6), 1411. https://doi.org/10.3390/life13061411MDPI
Petrylak, D. P., Perez, R. P., Zhang, J., Smith, D. C., Ruether, J. D., Sridhar, S. S., et al. (2017). A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): Updated analysis of patients with metastatic urothelial cancer. Journal of Clinical Oncology, 35(15_suppl), 106. https://doi.org/10.1200/JCO.2017.35.15_suppl.106
Prima, M. J., Hassan, M., & Sharma, J. (2023). Novel approaches for combating antibiotic resistance in pathogenic bacteria. Microbial Bioactives, 6(1), 1–18.
Rodrigues, F., Reis, M., Ferreira, L., Grosso, C., Ferraz, R., Vieira, M., Vasconcelos, V., & Martins, R. (2024). The neuroprotective role of cyanobacteria with focus on the anti-inflammatory and antioxidant potential: Current status and perspectives. Molecules, 29(20), 4799. https://doi.org/10.3390/molecules29204799
Rojas, V., Rivas, L., Cárdenas, C., & Guzmán, F. (2020). Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules, 25(24), 5804. https://doi.org/10.3390/molecules25245804
Sabri, S., Mustofa, M. K., Fouad, M. T., & et al. (2024). Comprehensive analysis of CRISPR-Cas systems in microbes and their multifaceted applications. Microbial Bioactives, 7(1), 1–11.
Saghir, S. A. M., & Al Suede, F. S. (2024). Synergistic efficacy and mechanism of probiotics and prebiotics in enhancing health impact. Microbial Bioactives, 7(1), 1–11.
Sainis, I., Fokas, D., Vareli, K., Tzakos, A. G., Kounnis, V., & Briasoulis, E. (2010). Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Marine Drugs, 8(3), 629-657. https://doi.org/10.3390/md8030629
Sultan Ayesh Mohammed Saghir, Fouad Saleh Al Suede. (2024). Synergistic Efficacy and Mechanism of Probiotics and Prebiotics in Enhancing Health Impact, Microbial Bioactives, 7(1), 1–11, 9300
Suriana Sabri, Md Kawsar Mustofa, M. T. Fouad et al. (2024). Comprehensive Analysis of CRISPR-Cas Systems in Microbes and Their Multifaceted Applications, Microbial Bioactives, 7(1), 1-11, 9376
Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2020). Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins, 12(1), 12. https://doi.org/10.3390/toxins12010012
Taufiq Nawaz, Shah Fahad, Liping Gu, Shah Saud, Ruanbao Zhou, Cyanobacteria: role in sustainable biomanufacturing and nitrogen fixation, Biofuels, Bioproducts and Biorefining, 10.1002/bbb.2674, 18, 6, (2132-2155), (2024).
Tiwari, A. K., & Tiwari, B. S. (2020). Cyanotherapeutics: An emerging field for future drug discovery. Applied Psychology, 1(1), 44–57. https://doi.org/10.1080/26388081.2020.1744480
Verma, V. A., Pillow, T. H., DePalatis, L., Li, G., Phillips, G. L., Polson, A. G., et al. (2015). The cryptophycins are potent payloads for antibody drug conjugates. Bioorganic & Medicinal Chemistry Letters, 25(4), 864–868. https://doi.org/10.1016/j.bmcl.2014.12.070
Wijewickrama, M., Greene, T., & Cock, I. E. (2023). Therapeutics from cyanobacteria: A review of cyanobacteria-derived compounds as anti-cancer drug leads. Pharmacognosy Reviews, 17(34), 230–246. https://doi.org/10.5530/phrev.2023.17.3
Xie, R., Chen, F., Ma, Y., Hu, W., Zheng, Q., Cao, J., & Wu, Y. (2023). Network pharmacology?based analysis of marine cyanobacteria-derived bioactive compounds for application to Alzheimer’s disease. Frontiers in Pharmacology, 14, 1249632. https://doi.org/10.3389/fphar.2023.1249632