References
Anaby, D., Shavin, D., Zimmerman-Moreno, G., Nissan, N., Friedman, E., & Sklair-Levy, M. (2023). ‘Earlier than early’ detection of breast cancer in Israeli BRCA mutation carriers applying AI-based analysis to consecutive MRI scans. Cancers, 15(11), 3120. https://doi.org/10.3390/cancers15113120
Bayareh-Mancilla, R., Medina-Ramos, L., Toriz-Vázquez, A., Hernández-Rodríguez, Y., & Cigarroa-Mayorga, O. (2023). Automated computer-assisted medical decision-making system based on morphological shape and skin thickness analysis for asymmetry detection in mammographic images. Diagnostics, 13(20), 3440. https://doi.org/10.3390/diagnostics13203440
Buser, M., van der Steeg, A., Wijnen, M., Fitski, M., van Tinteren, H., van den Heuvel-Eibrink, M., Littooij, A., & van der Velden, B. (2023). Radiologic versus segmentation measurements to quantify Wilms tumor volume on MRI in pediatric patients. Cancers, 15(8), 2115. https://doi.org/10.3390/cancers15082115
Cozzi, A., Cè, M., De Padova, G., Libri, D., Caldarelli, N., Zucconi, F., Oliva, G., & Cellina, M. (2023). Deep learning-based versus iterative image reconstruction for unenhanced brain CT: A quantitative comparison of image quality. Tomography, 9(4), 1629–1637. https://doi.org/10.3390/tomography9040123
Farahat, Z., Zrira, N., Souissi, N., Benamar, S., Belmekki, M., Ngote, M., & Megdiche, K. (2023). Application of deep learning methods in a Moroccan ophthalmic center: Analysis and discussion. Diagnostics, 13(10), 1694. https://doi.org/10.3390/diagnostics13101694
Gibala, S., Obuchowicz, R., Lasek, J., Schneider, Z., Piorkowski, A., Pociask, E., & Nurzynska, K. (2023). Textural features of MR images correlate with an increased risk of clinically significant cancer in patients with high PSA levels. Journal of Clinical Medicine, 12(9), 2836. https://doi.org/10.3390/jcm12092836
Huang, C., Chiang, H., Hsieh, C., Chou, C., Jhou, Z., Hou, T., & Shaw, J. (2023). Using a deep-learning-based artificial intelligence technique to automatically evaluate the collateral status of multiphase CTA in acute ischemic stroke. Tomography, 9(2), 647–656. https://doi.org/10.3390/tomography9020049
Hunter, B., Hindocha, S., & Lee, Richard. (2022). The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers. 14. 10.3390/cancers14061524.
Jeong, D., Jeong, W., Lee, J., & Park, S. (2023). Use of automated machine learning for classifying hemoperitoneum on ultrasonographic images of Morrison’s pouch: A multicenter retrospective study. Journal of Clinical Medicine, 12(12), 4043. https://doi.org/10.3390/jcm12124043
Kim, S., & Kim, Y. (2023). Effects of path-finding algorithms on the labeling of the centerlines of Circle of Willis arteries. Tomography, 9(5), 1423–1433. https://doi.org/10.3390/tomography9050109
Kode, H., & Barkana, B. (2023). Deep learning- and expert knowledge-based feature extraction and performance evaluation in breast histopathology images. Cancers, 15(11), 3075. https://doi.org/10.3390/cancers15113075
Kufel, J., Bargiel-Laczek, K., Kozlik, M., Czogalik, L., Dudek, P., Magiera, M., Bartnikowska, W., Lis, A., Paszkiewicz, I., Kocot, S., et al. (2023). Chest X-ray foreign objects detection using artificial intelligence. Journal of Clinical Medicine, 12(17), 5841. https://doi.org/10.3390/jcm12175841
Kukla, P., Maciejewska, K., Strojna, I., Zapal, M., Zwierzchowski, G., & Bak, B. (2023). Extended reality in diagnostic imaging—A literature review. Tomography, 9(5), 1071–1082. https://doi.org/10.3390/tomography9050087
Lien, W., Yeh, C., Chang, C., Chang, C., Wang, W., Chen, C., & Lin, Y. (2023). Convolutional neural networks to classify Alzheimer’s disease severity based on SPECT images: A comparative study. Journal of Clinical Medicine, 12(7), 2218. https://doi.org/10.3390/jcm12072218
Lindemann, M., Glänzer, L., Roeth, A., Schmitz-Rode, T., & Slabu, I. (2023). Towards realistic 3D models of tumor vascular networks. Cancers, 15(20), 5352. https://doi.org/10.3390/cancers15205352
Ma, H., Xu, C., Nie, C., Han, J., Li, Y., & Liu, C. (2023). DBE-Net: Dual boundary-guided attention exploration network for polyp segmentation. Diagnostics, 13(5), 896. https://doi.org/10.3390/diagnostics13050896
Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypinski, P., Gibbs, P., & Cook, G. (2020). Introduction to radiomics. Journal of Nuclear Medicine, 61(4), 488–495. https://doi.org/10.2967/jnumed.118.222893
Mendes, J., Matela, N., & Garcia, N. (2023). Avoiding tissue overlap in 2D images: Single-slice DBT classification using convolutional neural networks. Tomography, 9(2), 398–412. https://doi.org/10.3390/tomography9020033
Nadkarni, R., Clark, D., Allphin, A., & Badea, C. (2023). A deep learning approach for rapid and generalizable denoising of photon-counting micro-CT images. Tomography, 9(6), 1286–1302. https://doi.org/10.3390/tomography9060114
Najjar, R. (2023). Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics, 13(14), 2760. https://doi.org/10.3390/diagnostics13142760
Nam, H., Park, S., Ho, J., Park, S., Cho, J., & Lee, Y. (2023). A key-point detection algorithm in deep learning can predict lower limb alignment using simple knee radiographs. Journal of Clinical Medicine, 12(5), 1455. https://doi.org/10.3390/jcm12051455
Obuchowicz, R., Kruszynska, J., & Strzelecki, M. (2021). Classifying median nerves in carpal tunnel syndrome: Ultrasound image analysis. Biocybernetics and Biomedical Engineering, 41(1), 335–351. https://doi.org/10.1016/j.bbe.2020.11.003
Ozga, J., Wyka, M., Raczko, A., Tabor, Z., Oleniacz, Z., Korman, M., & Wojciechowski, W. (2023). Performance of a fully automated algorithm detecting bone marrow edema in sacroiliac joints. Journal of Clinical Medicine, 12(14), 4852. https://doi.org/10.3390/jcm12144852
Ozkara, B., Chen, M., Federau, C., Karabacak, M., Briere, T., Li, J., & Wintermark, M. (2023). Deep learning for detecting brain metastases on MRI: A systematic review and meta-analysis. Cancers, 15(2), 334. https://doi.org/10.3390/cancers15020334
Peretti, L., Donatelli, G., Cencini, M., Cecchi, P., Buonincontri, G., Cosottini, M., Tosetti, M., & Costagli, M. (2023). Generating synthetic radiological images with PySynthMRI: An open-source cross-platform tool. Tomography, 9(5), 1723–1733. https://doi.org/10.3390/tomography9050136
Piórkowski, A., Obuchowicz, R., Urbanik, A., & Strzelecki, M. (2023). Advances in musculoskeletal imaging and their applications. Journal of Clinical Medicine, 12(21), 6585. https://doi.org/10.3390/jcm12216585
Poel, R., Kamath, A., Willmann, J., Andratschke, N., Ermis, E., Aebersold, D., Manser, P., & Reyes, M. (2023). Deep-learning-based dose predictor for glioblastoma—Assessing the sensitivity and robustness for dose awareness in contouring. Cancers, 15(16), 4226. https://doi.org/10.3390/cancers15164226
Pula, M., Kucharczyk, E., Zdanowicz, A., & Guzinski, M. (2023). Image quality improvement in deep learning image reconstruction of head computed tomography examination. Tomography, 9(6), 1485–1493. https://doi.org/10.3390/tomography9060120
Qiu, H., Ding, S., Liu, J., Wang, L., & Wang, X. (2022). Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Current Oncology, 29(3), 1773-1795. https://doi.org/10.3390/curroncol29030146
Rahmanuddin, S., Jamil, A., Chaudhry, A., Seto, T., Brase, J., Motarjem, P., Khan, M., Tomasetti, C., Farwa, U., Boswell, W., et al. (2023). COVID and cancer: A complete 3D advanced radiological CT-based analysis to predict the outcome. Cancers, 15(3), 651. https://doi.org/10.3390/cancers15030651
Raspe, J., Harder, F., Rupp, S., McTavish, S., Peeters, J., Weiss, K., Makowski, M., Braren, R., Karampinos, D., & Van, A. (2023). Retrospective motion artifact reduction by spatial scaling of liver diffusion-weighted images. Tomography, 9(6), 1839–1856. https://doi.org/10.3390/tomography9060153
Rodrigues, N., Silva, S., Vanneschi, L., & Papanikolaou, N. (2023). A comparative study of automated deep learning segmentation models for prostate MRI. Cancers, 15(6), 1467. https://doi.org/10.3390/cancers15061467
Shanmugam, K., & Rajaguru, H. (2023). Exploration and enhancement of classifiers in the detection of lung cancer from histopathological images. Diagnostics, 13(13), 3289. https://doi.org/10.3390/diagnostics13133289
Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., & Tufael. (2018). Advancing medical science through nanobiotechnology: Prospects, applications, and future directions. Journal of Primeasia, 1(1), 1–7.
Song, G., Xie, Z., Wang, H., Li, S., Yao, D., Chen, S., & Shi, Y. (2023). Segmentation of the portal vein in multiphase CTA images based on unsupervised domain transfer and pseudo-label. Diagnostics, 13(15), 2250. https://doi.org/10.3390/diagnostics13152250
Strzelecki, M., & Badura, P. (2022). Machine learning for biomedical applications. Applied Sciences, 12(1), 2022. https://doi.org/10.3390/app12012022
Tufael, & Sunny, A. R. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1–6.
Tufael, A. R. S., Jamil, A., Alam, M., & Sunny, A. R. (2023). Artificial intelligence in addressing cost, efficiency, and access challenges in healthcare. Journal of Primeasia, 4(1), 1–5.
Yang, D., Huang, Y., Li, B., Cai, J., & Ren, G. (2023). Dynamic chest radiograph simulation technique with deep convolutional neural networks: A proof-of-concept study. Cancers, 15(21), 5768. https://doi.org/10.3390/cancers15215768
Zhang, Y., Wu, C., Xiao, Z., Lv, F., & Liu, Y. (2023). A deep learning radiomics nomogram to predict response to neoadjuvant chemotherapy for locally advanced cervical cancer: A two-center study. Diagnostics, 13(5), 1073. https://doi.org/10.3390/diagnostics13051073