References
Ali, T., & Kostakos, P. (2023). Huntgpt: Integrating machine learning-based anomaly detection and explainable ai with large language models (llms). ArXiv Preprint ArXiv:2309.16021.
Duong, H.-T., Le, V.-T., & Hoang, V. T. (2023). Deep learning-based anomaly detection in video surveillance: A survey. Sensors, 23(11), 5024.
Garcia, J. F. C., & Blandon, G. E. T. (2022). A deep learning-based intrusion detection and preventation system for detecting and preventing denial-of-service attacks. IEEE Access, 10, 83043–83060.
Goswami, M. (2024). AI-based anomaly detection for real-time cybersecurity. International Journal of Research and Review Techniques, 3(1), 45–53.
Hdaib, M., Rajasegarar, S., & Pan, L. (2024). Quantum deep learning-based anomaly detection for enhanced network security. Quantum Machine Intelligence, 6(1), 26.
Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. J. Sci. Technol, 11, 1–24.
Inuwa, M. M., & Das, R. (2024). A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks. Internet of Things, 26, 101162.
Jadidi, Z., Pal, S., Nayak, N., Selvakkumar, A., Chang, C.-C., Beheshti, M., & Jolfaei, A. (2022). Security of machine learning-based anomaly detection in cyber physical systems. 2022 International Conference on Computer Communications and Networks (ICCCN), 1–7.
Jayasinghe, S., Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2022). Federated learning based anomaly detection as an enabler for securing network and service management automation in beyond 5g networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 345–350.
Khayyat, M. M. (2023). Improved bacterial foraging optimization with deep learning based anomaly detection in smart cities. Alexandria Engineering Journal, 75, 407–417.
Lutsiv, N., Maksymyuk, T., Beshley, M., Lavriv, O., Andrushchak, V., Sachenko, A., Vokorokos, L., & Gazda, J. (2022). Deep Semisupervised Learning-Based Network Anomaly Detection in Heterogeneous Information Systems. Computers, Materials & Continua, 70(1).
Nassif, A. B., Talib, M. A., Nasir, Q., & Dakalbab, F. M. (2021). Machine learning for anomaly detection: A systematic review. Ieee Access, 9, 78658–78700.
Okoli, U. I., Obi, O. C., Adewusi, A. O., & Abrahams, T. O. (2024). Machine learning in cybersecurity: A review of threat detection and defense mechanisms. World Journal of Advanced Research and Reviews, 21(1), 2286–2295.
Shah, V. (2021). Machine learning algorithms for cybersecurity: Detecting and preventing threats. Revista Espanola de Documentacion Cientifica, 15(4), 42–66.
Ullah, I., & Mahmoud, Q. H. (2021). Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEe Access, 9, 103906–103926.
Wang, S., Jiang, R., Wang, Z., & Zhou, Y. (2024). Deep learning-based anomaly detection and log analysis for computer networks. ArXiv Preprint ArXiv:2407.05639.
Yaqoob, S., Hussain, A., Subhan, F., Pappalardo, G., & Awais, M. (2023). Deep learning-based anomaly detection for fog-assisted IoVs network. IEEE Access, 11, 19024–19038.