Role of Human Microbiome in Non-Communicable Diseases: A Public Health Perspective
Tufael1*, Md. Sefaut Ullah 2
Clinical Epidemiology & Public Health 2(1) 1-8 https://doi.org/10.25163/health.2110279
Submitted: 02 April 2024 Revised: 19 June 2024 Published: 22 June 2024
Abstract
The human microbiome, a dynamic ecosystem of trillions of microorganisms, has become a central focus in understanding long-term health and disease. Once seen primarily as a support system for digestion and immunity, it is now recognized as a key player in the development and progression of non-communicable diseases (NCDs), including obesity, diabetes, cardiovascular disease, and neurological disorders. Disruptions in microbial balance, or dysbiosis, can impair metabolic function, immune regulation, and the control of inflammation, making the body more susceptible to chronic illnesses. Unlike static genetic factors, the microbiome is highly modifiable. It is shaped by daily choices such as diet, physical activity, environmental exposures, and even our social interactions. This makes it a promising target for intervention. Emerging strategies, such as personalized nutrition, prebiotic and probiotic therapies, and microbiome-informed public health initiatives, hold significant potential in preventing and managing non-communicable diseases (NCDs). Moreover, integrating microbiome health into community-level and multisectoral approaches could enhance public awareness, promote healthier behaviors, and reduce the economic burden of chronic diseases. As scientific understanding deepens, the microbiome presents a promising frontier where accessible, lifestyle-driven interventions can complement medical treatments and policy initiatives. This paper examines the evolving relationship between the human microbiome and non-communicable diseases (NCDs), highlighting the importance of comprehensive health strategies that acknowledge the microbiome as a crucial determinant of well-being in both individuals and populations.
Keywords: Human microbiome, non-communicable diseases (NCDs), Microbial dysbiosis, Chronic disease prevention, Personalized interventions.
References
Afzaal Muhammad, Saeed Farhan, Shah Yasir Abbas, Hussain Muzzamal, Rabail Roshina, Socol Claudia Terezia, Hassoun Abdo, Pateiro Mirian, Lorenzo José M. , Rusu Alexandru Vasile , Aadil Rana Muhammad (2022). Human gut microbiota in health and disease: Unveiling the relationship, Frontiers in Microbiology, Volume 13, DOI=10.3389/fmicb.2022.999001,ISSN=1664-302X
Albert, A. Y., Chaban, B., Wagner, E. C., Schellenberg, J. J., Links, M. G., van Schalkwyk, J., et al. (2015). A study of the vaginal microbiome in healthy Canadian women, utilizing CPN60-based molecular profiling, reveals distinct Gardnerella subgroup community state types. PLoS ONE 10:e0135620. doi: 10.1371/journal.pone.0135620
Allen, E. K., Koeppel, A. F., Hendley, J. O., Turner, S. D., Winther, B., and Sale, M. M. (2014). Characterization of the nasopharyngeal microbiota in health and during rhinovirus challenge. Microbiome 2:22. doi: 10.1186/2049-2618-2-22
Anderson, C. A., Boucher, G., Lees, C. W., Franke, A., D'Amato, M., Taylor, K. D., et al. (2011). A meta-analysis identifies 29 additional loci associated with ulcerative colitis risk, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252. doi: 10.1038/ng.764
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. doi: 10.1038/nature09944
Asmaa Abd Ali Alrifai and, Ammar K Jasman (2024). Characterization of Bacterial Isolates Klebsiella oxytoca from Burn Wound Infections, Microbial Bioactives, 7(1), 1-6, 9639
Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., Freeman, C. M., Schmidt, T. M., Young, V. B., et al. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6:e00037. doi: 10.1128/mBio.00037-15
Bengtsson-Palme, J., Angelin, M., Huss, M., Kjellqvist, S., Kristiansson, E., Palmgren, H., et al. (2015). The human gut microbiome is a transporter of antibiotic resistance genes between continents. Antimicrob. Agents Chemother. 59, 6551–6560. doi: 10.1128/AAC.00933-15
Blaser, M. J., Chen, Y., and Reibman, J. (2008). Does Helicobacter pylori protect against asthma and allergy? Gut 57, 561–567. doi: 10.1136/gut.2007.133462
Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., et al. (2015). Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16:191. doi: 10.1186/s13059-015-0759-1
Bonder, M. J., Tigchelaar, E. F., Cai, X., Trynka, G., Cenit, M. C., Hrdlickova, B., et al. (2016). The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 8:45. doi: 10.1186/s13073-016-0295-y
Botero, L. E., Delgado-Serrano, L., Cepeda, M. L., Bustos, J. R., Anzola, J. M., Del Portillo, P., et al. (2014). Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis. Microbiome 2:29. doi: 10.1186/2049-2618-2-29
Brooks, J. P., Edwards, D. J., Harwich, M. D., Rivera, M. C. Jr., Fettweis, J. M., Serrano, M. G., et al. (2015). The truth about metagenomics. Quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15:66. doi: 10.1186/s12866-015-0351-6
Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss, J., et al. (2011). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306. doi: 10.1101/gr.126516.111
Charlson, E. S., Bittinger, K., Haas, A. R., Fitzgerald, A. S., Frank, I., Yadav, A., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184, 957–963. doi: 10.1164/rccm. 201104- 0655OC
Chen J., Wright K., Davis J. M., et al. An expansion of rare intestinal microbes of a distinct lineage characterizes rheumatoid arthritis. Genome Medicine. 2016;8(1):p. 43. doi: 10.1186/s13073-016-0299-7.
Chen, Y. E., and Tsao, H. (2013). The skin microbiome: current perspectives and future challenges. J. Am. Acad. Dermatol. 69, 143–155. doi: 10.1016/j.jaad.2013.01.016
Clemente, J. C., Ursell, L. K., Parfrey, L. W., and Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270. doi: 10.1016/j.cell.2012.01.035
Consortium, T. H. M. P. (2012). Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214. doi: 10.1038/nature11234
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., et al. (2010). A comparative study in children from Europe and rural Africa reveals the impact of diet on shaping gut microbiota. Proc. Natl. Acad. Sci. U.S.A. 107, 14691–14696. doi: 10.1073/pnas.1005963107
de Steenhuijsen Piters, W. A., Huijskens, E. G., Wyllie, A. L., Biesbroek, G., van den Bergh, M. R., Veenhoven, R. H., et al. (2016). Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 10, 97–108. doi: 10.1038/ismej.2015.99
Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H., et al. (2010). The human oral microbiome. J. Bacteriol. 192, 5002–5017. doi: 10.1128/JB.00542-10
Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., McCloskey, L., Beck, J. M., Huffnagle, G. B., et al. (2015). Spatial variation in the healthy human lung microbiome and the adapted Island model of lung biogeography. Ann. Am. Thorac. Soc. 12, 821–830. doi: 10.1513/AnnalsATS.201501-029OC
Ellis, R. J., Bruce, K. D., Jenkins, C., Stothard, J. R., Ajarova, L., Mugisha, L., et al. (2013). Comparison of the distal gut microbiota from people and animals in Africa. PLoS ONE 8:e54783. doi: 10.1371/journal.pone.0054783
Fallani, M., Young, D., Scott, J., Norin, E., Amarri, S., Adam, R., et al. (2010). Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51, 77–84. doi: 10.1097/MPG.0b013e3181d1b11e
Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., et al. (2016). Population-level analysis of gut microbiome variation. Science 352, 560–564. doi: 10.1126/science.aad3503
Farzana Akter Mony, Md Moshiur Rahman, Md. Abdur Rahman, Dr. Nusrat Kabir, Birupaksha Biswas, Md Anwarul Islam, Moushumi Afroza Mou, Debashis Chandra Das (2024). "Isolation and Identification of Pathogenic Fungi from Street Foods in Dhaka City: Antifungal Sensitivity Patterns and Effects of Star Anise Extract", Microbial Bioactives, 7(1),1-10,10014
Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., et al. (2015). Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6:6528. doi: 10.1038/ncomms7528
Fettweis, J. M., Brooks, J. P., Serrano, M. G., Sheth, N. U., Girerd, P. H., Edwards, D. J., et al. (2014). Differences in the vaginal microbiome between African American women and women of European ancestry. Microbiology 160, 2272–2282. doi: 10.1099/mic.0.081034-0
Gao, Z., Tseng, C. H., Strober, B. E., Pei, Z., and Blaser, M. J. (2008). Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3:e2719. doi: 10.1371/journal.pone.0002719
Garrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., DuBois, A., Delaney, M. L., et al. (2010). Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300. doi: 10.1016/j.chom.2010.08.004
Gerasimidis, K., Bertz, M., Quince, C., Brunner, K., Bruce, A., Combet, E., et al. (2016). The effect of DNA extraction methodology on gut microbiota research applications. BMC Res. Notes 9:365. doi: 10.1186/s13104-016-2171-7
Gonder LY, Aydin B, Ates YC, Parilti DN, Acik L and Cerci A. (2023). Antimicrobial, Antioxidant, Cytotoxic, DNA Protective Activities, and Molecular Docking Studies of the Methanolic Extract of Salvia siirtica Kahraman, Celep & Dogan sp. Nov. (Lamiaceae). Microbial Bioactives, Vol. 6, Article 1.
Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober, C., et al. (2016). Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743. doi: 10.1016/j.chom.2016.04.017
Hospodsky, D., Pickering, A. J., Julian, T. R., Miller, D., Gorthala, S., Boehm, A. B., et al. (2014). Hand bacterial communities vary across two different human populations. Microbiology 160, 1144–1152. doi: 10.1099/mic.0.075390-0
Ibrahim MS. Hussein and Hajir A. Shareef (2024). Prevalence and Immune Response with Interferons to BK Polyomavirus in Chronic Kidney Disease Patients, Microbial Bioactives, 7(1), 1-7, 9848
Kao, C. C., Hsu, J. W., Dwarkanath, P., Karnes, J. M., Baker, T. M., Bohren, K. M., et al. (2016). Indian women of childbearing age do not metabolically conserve arginine as do American and Jamaican women. J. Nutr. 145, 884–892. doi: 10.3945/jn.114.208231
Kemppainen, K. M., Ardissone, A. N., Davis-Richardson, A. G., Fagen, J. R., Gano, K. A., Leon-Novelo, L. G., et al. (2015). Early childhood gut microbiomes show substantial geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38, 329–332. doi: 10.2337/dc14-0850
Krasselt M., Baerwald C. Sex, symptom severity, and quality of life in rheumatology. Clinical Reviews in Allergy and Immunology. 2019;56(3):346–361. doi: 10.1007/s12016-017-8631-6.
Leung, M. H., Wilkins, D., and Lee, P. K. (2015). Insights into the pan-microbiome: Skin microbial communities of Chinese individuals differ from those of other racial groups. Sci. Rep. 5:11845. doi: 10.1038/srep11845
Mahfoudh A.M. Abdulghani, Fouad Saleh AL Suede et al. (2024). Biodegradation as a Sustainable Solution for Environmental Restoration: Bridging the Gap, Microbial Bioactives, 7(1), 1-11, 9377
Martin, C., Burgel, P. R., Lepage, P., Andrejak, C., de Blic, J., Bourdin, A., et al. (2015). Host-Microbe Interactions in Distal Airways: Relevance to Chronic Airway Diseases. Eur. Respir. Rev. 24, 78–91. doi: 10.1183/09059180.00011614
Mohammed A. Dakhil, Mustafa Kadhum Naeem et al. (2024). Synthesis and Evaluation of 1,2,3-Triazole Derivatives of Sulfamethoxazole as Potential Antimicrobial Agents, Microbial Bioactives, 7(1), 1-10, 9663
Morton, E. R., Lynch, J., Froment, A., Lafosse, S., Heyer, E., Przeworski, M., et al. (2015). Variation in rural african gut microbiota is strongly correlated with colonization by entamoeba and subsistence. PLoS Genet. 11:e1005658. doi: 10.1371/journal.pgen.1005658
Mu Q., Tavella V. J., Kirby J. L., et al. Antibiotics ameliorate lupus-like symptoms in mice. Scientific Reports. 2017;7(1):p. 13675. doi: 10.1038/s41598-017-14223-0.
Picchianti-Diamanti A., Panebianco C., Salemi S., et al. Analysis of gut microbiota in patients with rheumatoid arthritis: Disease-related dysbiosis and modifications induced by etanercept. International Journal of Molecular Sciences. 2018;19(10) doi: 10.3390/ijms19102938.
Sayed Ul Alam Shibly, Debananda S Ningthoujam (2023). A Review of Human Microbiomes on the Regulation of Body's Hidden Ecosystem, Microbial Bioactives, 6(1), 1-10, 9374
Thekra Abdulaali Abed, Anwar A. Abdullah et al. (2024). COVID-19 Infection Patterns and Preventive Behaviors at Babylon University, Microbial Bioactives, 7(1), 1-7, 9741
Xiao M., Fu X., Ni Y., et al. Protective effects of Paederia scandens extract on rheumatoid arthritis mouse model by modulating gut microbiota. Journal of Ethnopharmacology. 2018;226:97–104. doi: 10.1016/j.jep.2018.08.012.
View Dimensions
View Altmetric
Save
Citation
View
Share