Integrative Disciplinary Research | Online ISSN 3064-9870
REVIEWS   (Open Access)

Natural Bioactives and Microbiome Based Precision Therapeutics for Cancer, Chronic, and neurodegenerative diseases

Israt Jahan Nisha1*, Esrat Jahan Elora2

+ Author Affiliations

Journal of Primeasia 6(1) 1-8 https://doi.org/10.25163/primeasia.6110264

Submitted: 08 March 2025  Revised: 08 May 2025  Published: 12 May 2025 

Natural bioactives and therapeutics based on the microbiota provide promising, focused methods for successfully treating chronic, neurological, and cancerous conditions.

Abstract


As modulation of the gut microbiome and host-microbiome interactions are potential strategies, natural bioactives for example, polyphenols, flavonoids, alkaloids, and terpenoids are increasingly employed. The gut microbiota metabolizes dietary polyphenols into neuroprotective metabolites and antineuro-inflammatory and anti-carcinogenic agents. Polyphenol-rich dietary patterns have been shown to have 30 to 50% reduced risk of developing chronic diseases such cardiovascular disease, type-2 diabetes and colorectal neoplasia according to several studies of epidemiology. Curcumin has been found to decrease TNF-α and IL-6 levels by 50% and 47%, respectively, whereas insulin sensitivity enhancement and LDL cholesterol lowering are obtained at respective levels of 13 and 12% by polyphenol resveratrol in clinical and preclinical researches. Improvement of beneficial Bifid bacterium and Lactobacillus by 20 to and112% respectively were other effects on gut microbiota polyphenolic composition. Also, the arrangement of the gut microbiome controls the effectiveness of immunotherapy, where the attendance of Akkermansia muciniphila is related with 30-40% greater reply rates to PD-1 blockade. In the instance of neurodegenerative diseases, changes in short chain fatty acid (SCFA) producing bacteria are present in 30-70% of patients. Bioactive compounds like quercetin have shown to decrease inflammatory neuropathic markers associated with inflammation by as much as 30%. Multi-omics strategies integrating microbiome analysis and precision medicine frameworks have achieved predictive accuracies over 85% tailored-medicine targets highlighting the need to refine treatment paradigms. Keywords: Natural Bioactives, Microbiome, Precision Therapeutics, Cancer, Neurodegenerative Diseases.

References


Adak, A., & Khan, M. R. (2022). Potential Protective Mechanisms of S-equol, a Metabolite of Soy Isoflavone Daidzein, on Cognitive Decline and Dementia. International Journal of Molecular Sciences, 23(19), 11921. https://doi.org/10.3390/ijms231911921

Amin, M. S., Rahman, A., Prapty, A. N., Al Numan, A., Rahman, M. M., Ahmed, B., Hasan Shabuj, M. M., & Aunni, S. A. A. (2024). Nanomedicine in cancer therapy: From preclinical promise to clinical applications. Journal of Precision Biosciences, 6(1), 1–14. https://doi.org/10.25163/biosciences.6110064

Barichella, M., Pacchetti, C., Bolliri, C., Cassani, E., Iorio, L., Pusani, C., ... & Pezzoli, G. (2016). Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology, 87(12), 1274-1280. https://doi.org/10.1212/WNL.0000000000003077

Baruch, E. N., Youngster, I., Ben-Betzalel, G., Ortenberg, R., Lahat, A., Katz, L., ... & Boursi, B. (2021). Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 371(6529), 602–609. https://doi.org/10.1126/science.abb5920

Bashir, M. S., Hossian, M., Uddin, M. K. M., Sayem, M. A., Sultana, A., Rana, F. A., ... & Das, S. S. (2025). Association between hepatocellular carcinoma and diabetes mellitus. Journal of Primeasia, 6(1), 1–7. https://doi.org/10.25163/primeasia.6110193

Bashir, M. S., Sayem, M. A., Das, S. S., Das, N., Sultana, A., Rahman, M. M., ... & Uddin, M. K. M. (2025). High viral load is a risk factor for hepatocellular carcinoma: Clinical and laboratory insights from a cross-sectional study. Journal of Angiotherapy, 9(1), 1–8. https://doi.org/10.25163/angiotherapy.9110219

Bertoia, M. L., Cassidy, A., Rimm, E. B., Rosner, B., & Hu, F. B. (2015). Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women. BMJ, 351, h2885. https://doi.org/10.1136/bmj.h2885

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., ... & Pettersson, S. (2014). The gut microbiota influences blood–brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158. https://doi.org/10.1126/scitranslmed.3009759

Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 11(10), 577–591. https://doi.org/10.1038/nrendo.2015.128

Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24(8), 1415–1422. https://doi.org/10.1016/j.jnutbio.2013.05.001

Cardozo, M. F., Baptista, B. G., Nascimento, D., Esgalhado, M., & Mafra, D. (2025). Urolithin as a Metabolite of Ellagitannins and Ellagic Acid from Fruits and Nuts: A Narrative Review. Current Nutrition & Food Science, 21(2), 123–134. https://doi.org/10.1007/s13668-025-00645-0

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., ... & Cryan, J. F. (2013). The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666–673. https://doi.org/10.1038/mp.2012.77

Das, S. S., Hossain, M. S., Sultana, A., Rana, F. A., Hossen, A., Maowla, M. S., ... & Bashir, M. S. (2025). The influence of chronic kidney disease on hepatocellular carcinoma. Journal of Primeasia, 6(1), 1–8. https://doi.org/10.25163/primeasia.6110204

Derosa, L., Routy, B., Fidelle, M., Iebba, V., Alla, L., & Galleron, N. (2022). Intestinal Akkermansia muciniphila predicts vigorous response to anti–PD-1 therapy in non–small-cell lung cancer. Cell Reports Medicine, 3(9), 100598. https://doi.org/10.1016/j.xcrm.2022.100598

Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., ... & Wang, J. (2015). Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nature Communications, 6(1), 6528. https://doi.org/10.1038/ncomms7528

Franzosa, E. A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H. J., Reinker, S., ... & Huttenhower, C. (2019). Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature Microbiology, 4(2), 293–305. https://doi.org/10.1038/s41564-018-0306-4

Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., ... & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. https://doi.org/10.2337/db08-1637

Haiser, H. J., & Turnbaugh, P. J. (2013). Is it time for a metagenomic basis of therapeutics? Science, 339(6117), 514–515. https://doi.org/10.1126/science.1236225

Hossian, M., Hasan, M. M., Sultana, A., Das, S. S., Paul, P., Shamsuzzaman, M., ... & Bashir, M. S. (2024). Potential role of Helicobacter pylori infection in hepatocellular carcinoma: A clinical and laboratory-based study. Journal of Angiotherapy, 8(12), 1–9. https://doi.org/10.25163/angiotherapy.81210217

Islam, M. R., Yesmin, T., Prapty, A. N., Biswash, M. A. R., Rana, M. S., & Rashid, M. H. O. (2024). Natural environmental sources of resveratrol and its therapeutic role in cancer prevention. Australian Herbal Insight, 7(1), 1–11. https://doi.org/10.25163/ahi.719931

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., ... & Bleich, A. (2021). The short-chain fatty acid butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences, 118(1), e2017166118. https://doi.org/10.1073/pnas.2017166118

Ma, N., & Ma, X. (2019). Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic prospects. Comprehensive Reviews in Food Science and Food Safety, 18(1), 221–242. https://doi.org/10.1111/1541-4337.12410

Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., ... & Hart, A. (2016). The gut microbiota and host health: a new clinical frontier. Gut, 65(2), 330–339. https://doi.org/10.1136/gutjnl-2015-309990

McBurney, M. I., Davis, C., Fraser, C. M., Schneeman, B. O., Huttenhower, C., Verbeke, K., ... & Walter, J. (2019). Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. The Journal of Nutrition, 149(11), 1882–1895. https://doi.org/10.1093/jn/nxz154

Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology, 9, 757. https://doi.org/10.3389/fmicb.2018.00757

Nagpal, R., Neth, B. J., Wang, S., Craft, S., & Yadav, H. (2020). Modified Mediterranean–Ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine, 59, 102951. https://doi.org/10.1016/j.ebiom.2020.102951

Nicholson, J. K., Holmes, E., Kinross, J. M., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813

O'Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science, 350(6265), 1214–1215. https://doi.org/10.1126/science.aac8469

Prapty, A. N., Amin, M. S., Hossian, M., Rahman, A., & Bashir, M. S. (2025). Resveratrol as a chemopreventive agent: Molecular insights and preclinical evidence. Journal of Precision Biosciences, 6(1), 1–10. https://doi.org/10.25163/biosciences.6110071

Prapty, A. N., Amin, M. S., Sayem, M. A., Das, S. S., & Bashir, M. S. (2025). Curcumin and colorectal cancer: Molecular targets, preclinical insights and future perspectives. Journal of Precision Biosciences, 6(1), 1–11. https://doi.org/10.25163/biosciences.6110069

Quigley, E. M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Current Neurology and Neuroscience Reports, 17, 94. https://doi.org/10.1007/s11910-017-0802-6

Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341–352. https://doi.org/10.1038/nri.2016.42

Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P., Alou, M. T., Daillère, R., ... & Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371), 91–97. https://doi.org/10.1126/science.aan3706

Sayem, M. A., Das, S. S., Das, N., Amin, M. S., Uddin, M. K. M., Hossian, M., ... & Bashir, M. S. (2025). Non-alcoholic fatty liver disease and hepatocellular carcinoma: Clinical associations and risks. Journal of Angiotherapy, 9(1), 1–9. https://doi.org/10.25163/angiotherapy.9110218

Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009

Selhub, E. M., Logan, A. C., & Bested, A. C. (2014). Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. Journal of Physiological Anthropology, 33, 2. https://doi.org/10.1186/1880-6805-33-2

Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., ... & Gajewski, T. F. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 350(6264), 1084–1089. https://doi.org/10.1126/science.aac4255

Sommer, F., & Bäckhed, F. (2013). The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology, 11(4), 227–238. https://doi.org/10.1038/nrmicro2974

Thaiss, C. A., Zmora, N., Levy, M., & Elinav, E. (2016). The microbiome and innate immunity. Nature, 535(7610), 65–74. https://doi.org/10.1038/nature18847

Tilg, H., & Moschen, A. R. (2014). Microbiota and diabetes: an evolving relationship. Gut, 63(9), 1513–1521. https://doi.org/10.1136/gutjnl-2014-306928

Tuohy, K. M., Conterno, L., Gasperotti, M., & Viola, R. (2012). Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry, 60(36), 8776–8782. https://doi.org/10.1021/jf2053959

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414

Zitvogel, L., Galluzzi, L., Viaud, S., Vétizou, M., Daillère, R., Merad, M., & Kroemer, G. (2015). Cancer and the gut microbiota: an unexpected link. Science Translational Medicine, 7(271), 271ps1. https://doi.org/10.1126/scitranslmed.3010473

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
104
View
0
Share