Precision sciences | Online ISSN 3064-9226
RESEARCH ARTICLE   (Open Access)

Targeted Drug Repurposing in Precision Oncology Reveals Celecoxib as a GSK-3β Inhibitor in Hepatocellular Carcinoma

Amena Khatun Manica1*, Md Abu Bakar Siddique2, Tufael3, Most Farhana Akter4, Md. Robiul Islam4

+ Author Affiliations

Journal of Precision Biosciences 6 (1) 1-8 https://doi.org/10.25163/biosciences.6110440

Submitted: 10 September 2024 Revised: 29 September 2024  Published: 02 November 2024 


Abstract

Background: Hepatocellular carcinoma (HCC) is a lethal cancer lacking effective targeted therapies. GSK-3β plays a pivotal role in oncogenic signaling in HCC. This study explores the potential of repurposing FDA-approved drugs targeting GSK-3β as a precision medicine approach, aiming to uncover novel therapeutic strategies through in silico molecular modeling.

Aim: This study aimed to identify potential FDA-approved drugs that can be repurposed to inhibit GSK-3β using an in-silico precision medicine approach for HCC.

Methods: The three-dimensional structure of GSK-3β (PDB ID: 1Q3W) was retrieved from the Protein Data Bank and prepared for docking simulations. Four FDA-approved candidate drugs-Celecoxib, Tideglusib, Metformin, and Lithium carbonate-were docked using AutoDock Vina integrated within PyRx. Toxicity profiles were predicted using the ProTox-II webserver. Additionally, functional enrichment and pathway analyses were performed using STRING v11.5 to identify key GO terms and KEGG pathways associated with GSK-3β.

Results: Celecoxib demonstrated the strongest binding affinity and specific hydrophobic and π-sulfur interactions with the GSK-3β active site, suggesting high inhibitory potential. GO and KEGG analyses confirmed GSK-3β’s involvement in cell proliferation, anti-apoptotic regulation, and oxidative stress response. Despite minor predicted toxicities, Celecoxib’s profile was manageable under precision-guided frameworks.

Conclusion: These findings highlight Celecoxib as a promising repurposed candidate targeting GSK-3β in HCC, supporting its potential inclusion in future precision oncology strategies.

Keywords: GSK-3β, Hepatocellular carcinoma (HCC), Drug repurposing, Molecular docking, Celecoxib

References


A. R., N., & G. K., R. (2024). A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database. Journal of Biomolecular Structure and Dynamics, 42(2), 629–651. https://doi.org/10.1080/07391102.2023.2194997

Bahmad, H. F., Chalhoub, R. M., Harati, H., Bou-Gharios, J., Assi, S., Ballout, F., Monzer, A., Msheik, H., Araji, T., Elajami, M. K., Ghanem, P., Chamaa, F., Kadara, H., Abou-Antoun, T., Daoud, G., Fares, Y., & Abou-Kheir, W. (2021). Tideglusib attenuates growth of neuroblastoma cancer stem/progenitor cells in vitro and in vivo by specifically targeting GSK-3β. Pharmacological Reports, 73(1), 211–226.  https://doi.org/10.1007/s43440-020-00162-7

Ban, K. C., Singh, H., Krishnan, R., & Seow, H. F. (2003). GSK-3β phosphorylation and alteration of β-catenin in hepatocellular carcinoma. Cancer Letters, 199(2), 201–208. https://doi.org/10.1016/S0304-3835(03)00421-X

Butt, S. S., Badshah, Y., Shabbir, M., & Rafiq, M. (2020). Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians. JMIR Bioinformatics and Biotechnology, 1(1), e14232. https://doi.org/10.2196/14232

Caldwell, B., Aldington, S., Weatherall, M., Shirtcliffe, P., & Beasley, R. (2006). Risk of Cardiovascular Events and Celecoxib: a Systematic Review and Meta-Analysis. Journal of the Royal Society of Medicine, 99(3), 132–140. https://doi.org/10.1177/014107680609900315

Cervello, M., Bachvarov, D., Cusimano, A., Sardina, F., Azzolina, A., Lampiasi, N., Giannitrapani, L., McCubrey, J. A., & Montalto, G. (2011). COX-2-Dependent and COX-2-Independent Mode of Action of Celecoxib in Human Liver Cancer Cells. OMICS: A Journal of Integrative Biology, 15(6), 383–392. https://doi.org/10.1089/omi.2010.0092

Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials (pp. 35–58). Elsevier. https://doi.org/10.1016/B978-0-12-803269-5.00002-4

Chen, J., Yu, Y., Ji, T., Ma, R., Chen, M., Li, G., Li, F., Ding, Q., Kang, Q., Huang, D., Liang, X., Lin, H., & Cai, X. (2016). Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Medicine, 5(10), 2678–2687. https://doi.org/10.1002/cam4.788

Chimal-Ramírez, G. K., Espinoza-Sanchez, N. A., & Fuentes-Panana, E. M. (2015). A Role for the Inflammatory Mediators Cox-2 and Metalloproteinases in Cancer Stemness. Anti-Cancer Agents in Medicinal Chemistry, 15(7), 837–855. https://doi.org/10.2174/1871520615666150318100822

Deldar Abad Paskeh, M., Mirzaei, S., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. Journal of Hepatocellular Carcinoma, Volume 8, 1415–1444. https://doi.org/10.2147/JHC.S336858

Dhanasekaran, R., Bandoh, S., & Roberts, L. R. (2016). Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research, 5, 879. https://doi.org/10.12688/f1000research.6946.1

Duan, J., Wu, Y., Liu, J., Zhang, J., Fu, Z., Feng, T., Liu, M., Han, J., Li, Z., & Chen, S. (2019). <p>Genetic Biomarkers For Hepatocellular Carcinoma In The Era Of Precision Medicine</p>. Journal of Hepatocellular Carcinoma, Volume 6, 151–166. https://doi.org/10.2147/JHC.S224849

Dubbink, H. J., Hollink, I. H. I. M., Avenca Valente, C., Wang, W., Liu, P., Doukas, M., van Noesel, M. M., Dinjens, W. N. M., Wagner, A., & Smits, R. (2018). A novel tissue-based ß-catenin gene and immunohistochemical analysis to exclude familial adenomatous polyposis among children with hepatoblastoma tumors. Pediatric Blood & Cancer, 65(6). https://doi.org/10.1002/pbc.26991

El-Serag, H. B. (2020). Epidemiology of Hepatocellular Carcinoma. In The Liver (pp. 758–772). Wiley. https://doi.org/10.1002/9781119436812.ch59

Fabregat, I. (2009). Dysregulation of apoptosis in hepatocellular carcinoma cells. World Journal of Gastroenterology, 15(5), 513. https://doi.org/10.3748/wjg.15.513

He, K., & Gan, W.-J. (2023). Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Management and Research, Volume 15, 435–448. https://doi.org/10.2147/CMAR.S411168

Jankowska, A., Satala, G., Bojarski, A. J., Pawlowski, M., & Chlon-Rzepa, G. (2021). Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer’s Disease. Current Medicinal Chemistry, 28(9), 1731–1745. https://doi.org/10.2174/0929867327666200427100453

Kosorok, M. R., & Laber, E. B. (2019). Precision Medicine. Annual Review of Statistics and Its Application, 6(1), 263–286. https://doi.org/10.1146/annurev-statistics-030718-105251

Ladd, A. D., Duarte, S., Sahin, I., & Zarrinpar, A. (2024). Mechanisms of drug resistance in HCC. Hepatology, 79(4), 926–940. https://doi.org/10.1097/HEP.0000000000000237

Leung, R. W. H., & Lee, T. K. W. (2022). Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 14(21), 5468. https://doi.org/10.3390/cancers14215468

Li, Q. K., Singh, A., Biswal, S., Askin, F., & Gabrielson, E. (2011). KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. Journal of Human Genetics, 56(3), 230–234. https://doi.org/10.1038/jhg.2010.172

Li, S., Lavrijsen, M., Bakker, A., Magierowski, M., Magierowska, K., Liu, P., Wang, W., Peppelenbosch, M. P., & Smits, R. (2020). Commonly observed RNF43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene, 39(17), 3458–3472. https://doi.org/10.1038/s41388-020-1232-5

LI, T., ZHONG, J., DONG, X., XIU, P., WANG, F., WEI, H., WANG, X., XU, Z., LIU, F., SUN, X., & LI, J. (2016). Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway. Oncology Reports, 35(6), 3614–3622. https://doi.org/10.3892/or.2016.4764

Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 73(17), 3221–3247. https://doi.org/10.1007/s00018-016-2223-0

M. M. H Shabuj, & Tufael. (2019). Advancing Personalized Treatment for Hepatocellular Carcinoma: Integrating Targeted Therapies, Precision Medicine, and Bioengineering for Improved Outcomes. Journal of Primeasia, 1.2(1), 1–14. https://doi.org/10.25163/primeasia.1110015

Md Abu Bakar Siddique, & Asim Debnath. (2018). Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions. Journal of Primeasia, 1(1), 1–10. https://doi.org/10.25163/primeasia.1110163

Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S.-M. N., Mbala, B. M., & Lohohola, P. O. (2021). In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. International Journal of TROPICAL DISEASE & Health, 1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492

Pérez-Alvarez, I., Islas-Flores, H., Gómez-Oliván, L. M., & García, O. D. (2020). Teratogenesis and Embryotoxicity Induced by Non-steroidal Anti-Inflammatory Drugs in Aquatic Organisms (pp. 115–129). https://doi.org/10.1007/698_2020_545

Rojas, A., Chen, D., Ganesh, T., Varvel, N. H., & Dingledine, R. (2019). The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opinion on Therapeutic Targets, 23(1), 1–13. https://doi.org/10.1080/14728222.2019.1554056

Sajadimajd, S., & Khazaei, M. (2018). Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18(6), 538–557. https://doi.org/10.2174/1568009617666171002144228

Tufael. (2024). Hepatocellular Carcinoma in a 55-Year-Old with Chronic Hepatitis B: A Case Report on Diagnosis and Management. Asia Pacific Journal of Cancer Research, 1(1). https://doi.org/10.70818/apjcr.2024.v01i01.07

Tufael, & Auditi Kar. (2024). Diagnostic Efficacy of Tumor Markers AFP, CA19-9, and CEA in Hepatocellular Carcinoma Patients. Journal of Angiotherapy, 8(4). https://doi.org/10.25163/angiotherapy.849513

Tufael, & Md Mostafizur Rahman. (2024). Combined Biomarkers for Early Diagnosis of Hepatocellular Carcinoma. Journal of Angiotherapy, 8(5). https://doi.org/10.25163/angiotherapy.859665

Tufael1, & Atiqur Rahman Sunny. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare. Journal of Primeasia, 4(1), 1–5. https://doi.org/10.25163/primeasia.419798

Verras, M., & Sun, Z. (2006). Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Letters, 237(1), 22–32. https://doi.org/10.1016/j.canlet.2005.06.004

Wang, J., Cho, N. L., Zauber, A. G., Hsu, M., Dawson, D., Srivastava, A., Mitchell-Richards, K. A., Markowitz, S. D., & Bertagnolli, M. M. (2018). Chemopreventive Efficacy of the Cyclooxygenase-2 (Cox-2) Inhibitor, Celecoxib, Is Predicted by Adenoma Expression of Cox-2 and 15-PGDH. Cancer Epidemiology, Biomarkers & Prevention, 27(7), 728–736. https://doi.org/10.1158/1055-9965.EPI-17-0573

Xu, D., Xu, M., Jeong, S., Qian, Y., Wu, H., Xia, Q., & Kong, X. (2019). The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01428

Xu, X., Huang, H., Tu, Y., Sun, J., Xiong, Y., Ma, C., Qin, S., Hu, W., & Zhou, J. (2021). Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose-Response, 19(2). https://doi.org/10.1177/15593258211024393

Zhang, S., Gao, W., Tang, J., Zhang, H., Zhou, Y., Liu, J., Chen, K., Liu, F., Li, W., To, S. K. Y., Wong, A. S. T., Zhang, X., Zhou, H., & Zeng, J.-Z. (2020). The Roles of GSK-3β in Regulation of Retinoid Signaling and Sorafenib Treatment Response in Hepatocellular Carcinoma. Theranostics, 10(3), 1230–1244. https://doi.org/10.7150/thno.38711

Zhu, Y., & Hu, X. (2022). Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Molecules, 27(20), 7124. https://doi.org/10.3390/molecules27207124


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
39
View
0
Share