References
Abdullah, M. S., Tasnim, K., Karim, M. Z., & Hasan, R. (2025). Improving market competitiveness using the use of artificial intelligence in strategic business decisions. Business & Social Sciences, 3(1), 1–8. https://doi.org/10.25163/business.3110213
Amat-Lefort, N., Barravecchia, F. and Mastrogiacomo, L. (2023), Quality 4.0: big data analytics to explore service quality attributes and their relation to user sentiment in Airbnb reviews, International Journal of Quality & Reliability Management, Vol. 40 No. 4.
Alotaibi, E. (2020). Application of machine learning in the hotel industry: a critical review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3), 78-96.
Agag, G., Durrani, B. A., Shehawy, Y. M., Alharthi, M., Alamoudi, H., El-Halaby, S., ... & Abdelmoety, Z. H. (2023). Understanding the link between customer feedback metrics and firm performance. Journal of Retailing and Consumer Services, 73, 103301.
Anubala, R., & Philosophers, C. (2023). The Future of Hospitality: Predictive Analytics in Hotel Management. International Journal for Multidimensional Research Perspectives, 1(3), 38-58.
Berbekova, A., Uysal, M., & Assaf, A. G. (2021). A thematic analysis of crisis management in tourism: A theoretical perspective. Tourism Management, 86, 104342.
Busulwa, R., Pickering, M., & Mao, I. (2022). Digital transformation and hospitality management competencies: Toward an integrative framework. International Journal of Hospitality Management, 102, 103132.
Bhuiyan, M., Rahman, M. A., Hoque, A. B., Ashrafuzzaman, M., & Rahman, A. (2023). Advanced analytics and machine learnig for revenue optimization in the hospitality industry: A comprehensive review of frameworks. American Journal of Scholarly Research and Innovation, 2(02), 52-74.
Buhalis, D., & Moldavska, I. (2022). Voice assistants in hospitality: using artificial intelligence for customer service. Journal of Hospitality and Tourism Technology, 13(3), 386-403.
Boch, A., Hohma, E., & Trauth, R. (2022). Towards an accountability framework for AI: Ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich: Munich, Germany.
Chugh, A., Patnana, A. K., Kumar, P., Chugh, V. K., Khera, D., & Singh, S. (2020). Critical analysis of methodological quality of systematic reviews and meta-analysis of antibiotics in third molar surgeries using AMSTAR 2. Journal of Oral Biology and Craniofacial Research, 10(4), 441-449.
Carneiro, T., Picoto, W. N., & Pinto, I. (2023). Big data analytics and firm performance in the hotel sector. Tourism and Hospitality, 4(2), 244-256.
Cherenkov, E., Benga, V., Lee, M., Nandwani, N., Raguin, K., Sueur, M. C., & Sun, G. (2024). From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry. Journal of Smart Tourism, 4(2), 5-14.
Egan, D., & Haynes, N. C. (2019). Manager perceptions of big data reliability in hotel revenue management decision making. International Journal of Quality & Reliability Management, 36(1), 25-39.
Fuchs, M., Höpken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations A case from Sweden. Journal of destination marketing & management, 3(4), 198-209.
Feilhauer, S., & Hahn, R. (2021). Formalization of firms’ evaluation processes in cross-sector partnerships for sustainability. Business & Society, 60(3), 684-726.
Ghosh, M., & Sen, S. (2023). Cloud-based data analytics platform in the hospitality industry: A comprehensive analysis and prospects.
Hasan, R., Abdullah, M. S., Tasnim, K., & Karim, M. Z. (2025). Artificial intelligence in digital marketing enhancing personalization and consumer engagement. publishing.emanresearch.org. https://doi.org/10.25163/business.3110209
Helal, M. Y., & Saleh, M. I. (2024). The art of artificial intelligence illusion: Exposing digital deception in the hospitality industry. Journal of Global Hospitality and Tourism, 3(1), 78-85.
Holston-Okae, B. L. (2018). The effect of employee turnover in the hospitality industry: Quantitative correlational study. International Journal of Learning and Development, 8(1), 156-183.
Jawabreh, O., Mahmoud, R., & Ali, B. J. (2024). Big data in the hospitality industry: a methodical review. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(4), 838-845.
Khan, R.H.R., 2024. Predictive Analysis of Hospitality Industry to Global Economic Growth. Journal of Computational Analysis and Applications (JoCAAA), 33(06), pp.539-544.
Koseoglu, M. A., Yick, M. Y. Y., King, B., & Arici, H. E. (2022). Relational bibliometrics for hospitality and tourism research: A best practice guide. Journal of Hospitality and Tourism Management, 52, 316-330.
Lamest, M., & Brady, M. (2019). Data-focused managerial challenges within the hotel sector. Tourism Review, 74(1), 104-115.
Lewis, C., Fischer, S., Weiner, B. J., Stanick, C., Kim, M., et al. (2015). Outcomes for implementation science: An enhanced systematic review of instruments using evidence-based rating criteria.
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Leo, N., & Archie, O. (2024). AI and Cybersecurity for SMEs: Balancing Ethical Considerations and Operational Efficiency.
Gilbert, C., & Gilbert, M. A. (2024). The Convergence of Artificial Intelligence and Privacy: Navigating Innovation with Ethical Considerations. International Journal, 3(9).
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Mariani, M., Bresciani, S., & Dagnino, G. B. (2021). The competitive productivity (CP) of tourism destinations: an integrative conceptual framework and a reflection on big data and analytics. International Journal of Contemporary Hospitality Management, 33(9), 2970-3002.
Meliboev, A. (2024). Analyzing Hotel Data-Driven System by Using Data Science Techniques. Qo ‘Qon Universiteit Xabarnomasi, 11, 108-111.
Mansour, R. M., Rana, M. E., & Al-Maatouk, Q. (2020). A theoretical framework for implementation of cloud computing in the malaysian hospitality industry. International Journal, 9(2), 2277-2286.
Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231-278.
Md Habibur Rahman, Tanjila Islam, Mohammad Hamid Hasan Amjad, Md Shihab Sadik Shovon, Md. Estehad Chowdhury, Md Rahatul Ashakin, Bayazid Hossain, Proshanta Kumar Bhowmik, Md Nurullah, Atiqur Rahman Sunny (2024). "Impact of Internet of Things (IoT) on Healthcare in Transforming Patient Care and Overcoming Operational Challenges", Journal of Angiotherapy, 8(11),1-8,10041. https://doi.org/10.25163/angiotherapy.81110041
Mirzaalian, F., & Halpenny, E. (2019). Social media analytics in hospitality and tourism: A systematic literature review and future trends. Journal of Hospitality and Tourism Technology, 10(4), 764-790.
Mariani, M. M., & Borghi, M. (2024). Artificial intelligence in service industries: customers’ assessment of service production and resilient service operations. International Journal of Production Research, 62(15), 5400-5416.
Max, R., Kriebitz, A., & Von Websky, C. (2021). Ethical considerations about the implications of artificial intelligence in finance. Handbook on ethics in finance, 577-592.
McGinley, S., Wei, W., Zhang, L., & Zheng, Y. (2021). The state of qualitative research in hospitality: A 5-year review 2014 to 2019. Cornell Hospitality Quarterly, 62(1), 8-20.
McGuire, K. A. (2016). *The analytic hospitality executive: Implementing data analytics in hotels and casinos*. [Books.google.com]. Retrieved from https://books.google.com/books? hl=en&lr=&id=fByRCgAAQBAJ&oi=fnd&pg=PR13&dq=hospitality+data+analytics+strategic+decision+making&ots=UEuWbh3OWY&sig=0IN4J0gjY6guxWOMvSErpqa3EqU
Nieveen, N., & Folmer, E. (2013). Formative evaluation in educational design research. Design Research, 153(1), 152-169.
Nadkarni, S., Kriechbaumer, F., Rothenberger, M. &and Christodoulidou, N., (2020). The path to the Hotel of Things: Internet of Things and Big Data converging in hospitality. Journal of Hospitality and Tourism Technology, 11(1), pp.93-107.
Nogueira, A.L., (2021). The effect of data standardization in cluster analysis. Brazilian Journal of Radiation Sciences, 9(1A).
Ofori, D., & Appiah-Nimo, C. (2022). Relationship management, competitive advantage and performance of hotels: a resource-based view. Journal of African Business, 23(3), 712-730.
Phillips-Wren, G., & Hoskisson, A. (2014). Decision support with big data: A case study in the hospitality industry. In DSS 2.0–Supporting Decision Making with New Technologies (pp. 401-413). IOS Press.
Ponting, S. S. A., & Lee, L. (2022). Building a thematic framework of identity research in hospitality organizations: a systematic literature review approach. International Journal of Contemporary Hospitality Management, 34(8), 3143-3161.
P. Gkliatis, I., & N. Koufopoulos, D. (2013). Strategic planning practices in the Greek hospitality industry. European Business Review, 25(6), 571-587.
Rady, A., Kamal, A., & Hussien, H. M. (2024). The Impact of Statistical Data Analytics on Decision-Making Process in Hotels. Minia Journal of Tourism and Hospitality Research MJTHR, 18(2), 42-72.
Rahman, M. H., Aunni, S. A. A., Ahmed, B., Rahman, M. M., Shabuj, M. M. H., Das, D. C., Akter, M. S., Numan, A. A. (2024). "Artificial intelligence for Improved Diagnosis and Treatment of Bacterial Infections", Microbial Bioactives, 7(1),1-18,10036. https://doi.org/10.25163/microbbioacts.7110036
Rahman, M. H., Biswash, M. A. R., Debnath, A., Siddique, M. A. B., Rahman, M. M., Rabbi, M. M. H., Mou, M. A. (2025). "The Future of AI in Laboratory Medicine: Advancing Diagnostics, Personalization, and Healthcare Innovation", Journal of Primeasia, 6(1),1-6,10151. https://doi.org/10.25163/primeasia.6110151
Rahman, M. H., Biswash, M. A. R., Siddique, M. A. B., Rahman, M. M., Mou, M. A., Debnath, A., Fatin, M. (2025). "Significance of Artificial intelligence in clinical and genomic diagnostics", Journal of Precision Biosciences, 7(1),1-14,10149. https://doi.org/10.25163/biosciences.7110149
Rahman, M. H., Islam, T., Hossen, M. E., Chowdhury, M. E., Hayat, R., Shovon, &. M. S. S., Shabbir, H. -. A. -., Alamgir, M., Akter, S., Chowdhury, R., Sunny, A. R. (2024). "Machine Learning in Healthcare: From Diagnostics to Personalized Medicine and Predictive Analytics", Journal of Angiotherapy, 8(12),1-8,10160. https://doi.org/10.25163/angiotherapy.81210160
Saini, A., & Bhalla, R. (2022). Artificial intelligence and automation: transforming the hospitality industry or threat to human touch. In Handbook of Research on Innovative Management Using AI in Industry 5.0 (pp. 88-97). IGI Global.
Sao, A., Singh, S., Dixit, S., Pandey, A. K., & Singh, S. (2017). Quality, productivity and customer satisfaction in service operations: An empirical study. International Journal of Mechanical Engineering and Technology, 8(10), 579-596.
Stylos, N. (2022). An integrated duality theory framework (IDTF): marking pathways for consumer decision-making researchers in the hospitality and tourism industry. International Journal of Contemporary Hospitality Management, 34(7), 2597-2619.
Stylos, N., & Zwiegelaar, J. (2019). Big data as a game changer: how does it shape business intelligence within a tourism and hospitality industry context? (pp. 163-181). Springer Singapore.
Shakil, A. K. M. A., Hossain, M. M., Khan, M. M. H., Noyon, S. I., & Ripon, M. B. B. (2025). A systematic review of corporate social responsibility practices in emerging markets. Business & Social Sciences, 3(1), 1–8. https://doi.org/10.25163/business.3110211
Shamim, S., Yang, Y., Zia, N. U., & Shah, M. H. (2021). Big data management capabilities in the hospitality sector: Service innovation and customer generated online quality ratings. Computers in Human Behavior, 121, 106777.
Saleh, M. (2024). Enhancing Forecasting Efficiency: Through Process Improvement.
Tasnim, K., Abdullah, M. S., Karim, M. Z., & Hasan, R. (2025). AI-driven innovation, privacy issues, and gaining consumer trust: The future of digital marketing. Business & Social Sciences, 3(1), 1–8. https://doi.org/10.25163/business.3110212
Ting, P. J. L., Chen, S. L., Chen, H., & Fang, W. C. (2017). Using big data and text analytics to understand how customer experiences posted on yelp. com impact the hospitality industry. Contemporary Management Research, 13(2).
Van Giffen, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144, 93-106.
Wolnaik, R. (2024). Continous improvement: Leveraging business analytics in industry 4.0 settings. Scientific papers of Silesian University of Technology.
Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning.
Zerbino, P., Aloini, D., Dulmin, R., & Mininno, V. (2018). Big data-enabled customer relationship management: A holistic approach. Information Processing & Management, 54(5), 818-846.
Zaafira, J., Kanimozhi, P., Rajmohan, R., Ananth, C., & Ajagbe, S. A. (2024). Machine Learning and Sentiment Analysis: Analysing Customer Feedback. In AI-Driven Marketing Research and Data Analytics (pp. 245-262). IGI Global.
Zemlina, Y., Peresichna, S. , Oliinyk, O, Danylenko, O., Krasovskyi, S., & Vasylenko, O. (2023). Ensuring the Efficiency of Service, Technology, and Management Processes in the Hotel and Restaurant Business. WSEAS Transactions on Environment and Development, 19, 1132-1144.