Precision sciences | Online ISSN 3064-9226
RESEARCH ARTICLE   (Open Access)

In Silico Repurposing of FDA-approved Drugs Targeting Keap1-NRF2 Axis in Hepatocellular Carcinoma for Precision Therapy

Amena Khatun Manica1*, Tufael2, Md Abu Bakar Siddique3, Most Farhana Akter4, Md. Robiul Islam4

+ Author Affiliations

Journal of Precision Biosciences 5 (1) 1-8 https://doi.org/10.25163/biosciences.5110436

Submitted: 27 June 2023 Revised: 30 August 2023  Accepted: 05 September 2023  Published: 07 September 2023 


Abstract

Background: The Keap1-NRF2 signaling pathway plays a critical role in regulating cellular redox homeostasis and has been identified as a major contributor to drug resistance in cancers such as hepatocellular carcinoma (HCC). Hyperactivation of this pathway enhances antioxidant responses in cancer cells, thereby reducing the effectiveness of chemotherapy and accelerating disease progression.

Objective: This study investigates the repurposing potential of three FDA-approved multi-kinase inhibitors-Regorafenib, Sorafenib, and Lenvatinib-as modulators of the Keap1-NRF2 pathway in the context of HCC.

Methods: The three-dimensional structure of wild-type Keap1 and two clinically relevant mutants (G364S, D422H) were retrieved and optimized for molecular docking. Ligand preparation, energy minimization, and flexible docking were conducted using PyRx (AutoDock Vina). Gene co-expression, GO enrichment, Reactome pathway mapping, and PPI analysis were performed using GEPIA2, STRING, Enrichr, and DAVID databases. Toxicity prediction was assessed using ProTox-II.

Results: Among all ligands, Regorafenib exhibited the strongest binding affinity (-10.7 kcal/mol) to the ETGE-binding cleft of Keap1 and maintained stable interactions with key residues. Mutational analysis revealed that binding affinity decreases in mutant forms. Co-expression analysis confirmed an inverse correlation between Keap1 and NRF2 expression in HCC. Enrichment analyses identified strong associations with oxidative stress response and detoxification pathways. Toxicity predictions showed Regorafenib and Sorafenib to be moderately hepatotoxic, whereas Lenvatinib demonstrated a safer profile.

Conclusion: This in silico study highlights Regorafenib as a strong candidate for Keap1-targeted repurposed therapy in HCC. Further in vitro and in vivo validation is recommended to confirm its therapeutic relevance in NRF2-dysregulated cancers.

Keywords: Keap1-NRF2 pathway, Hepatocellular carcinoma (HCC), Drug repurposing, Molecular docking, Redox homeostasis.

References

Al-Otaibi, J. S., Ullah, Z., Mary, Y. S., Mary, Y. S., Soman, S., Thirunavukkarasu, M., & Kwon, H. W. (2022). <scp>DFT</scp> investigations on conformational analysis, solvation effects, reactivity studies, chemical descriptors and docking of two anti-cancerous drugs, Lenvatinib and Regorafenib. Vietnam Journal of Chemistry, 60(5), 636–652. https://doi.org/10.1002/vjch.202200013

Al-Salama, Z. T., Syed, Y. Y., & Scott, L. J. (2019). Lenvatinib: A Review in Hepatocellular Carcinoma. Drugs, 79(6), 665–674. https://doi.org/10.1007/s40265-019-01116-x

Barrera, G., Cucci, M. A., Grattarola, M., Dianzani, C., Muzio, G., & Pizzimenti, S. (2021). Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants, 10(4), 510. https://doi.org/10.3390/antiox10040510

Bendavit, G., Aboulkassim, T., Hilmi, K., Shah, S., & Batist, G. (2016). Nrf2 Transcription Factor Can Directly Regulate mTOR. Journal of Biological Chemistry, 291(49), 25476–25488. https://doi.org/10.1074/jbc.M116.760249

Bender, D., & Hildt, E. (2019). Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. International Journal of Molecular Sciences, 20(18), 4659. https://doi.org/10.3390/ijms20184659

Camiña, N., & Penning, T. M. (2022). Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer. British Journal of Cancer, 126(9), 1244–1252. https://doi.org/10.1038/s41416-021-01642-0

Chakraborty, E., & Sarkar, D. (2022). Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers, 14(11), 2798. https://doi.org/10.3390/cancers14112798

Chen, J., Li, X., Ge, C., Min, J., & Wang, F. (2022). The multifaceted role of ferroptosis in liver disease. Cell Death & Differentiation, 29(3), 467–480. https://doi.org/10.1038/s41418-022-00941-0

Chen, J., Yu, Y., Ji, T., Ma, R., Chen, M., Li, G., Li, F., Ding, Q., Kang, Q., Huang, D., Liang, X., Lin, H., & Cai, X. (2016). Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Medicine, 5(10), 2678–2687. https://doi.org/10.1002/cam4.788

Chiang, S.-K., Chen, S.-E., & Chang, L.-C. (2021). The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells, 10(9), 2401. https://doi.org/10.3390/cells10092401

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Ding, B., Lou, W., Liu, J., Li, R., Chen, J., & Fan, W. (2019). In silico analysis excavates potential biomarkers by constructing miRNA-mRNA networks between non-cirrhotic HCC and cirrhotic HCC. Cancer Cell International, 19(1), 186. https://doi.org/10.1186/s12935-019-0901-3

Duan, J., Wu, Y., Liu, J., Zhang, J., Fu, Z., Feng, T., Liu, M., Han, J., Li, Z., & Chen, S. (2019). <p>Genetic Biomarkers For Hepatocellular Carcinoma In The Era Of Precision Medicine</p>. Journal of Hepatocellular Carcinoma, Volume 6, 151–166. https://doi.org/10.2147/JHC.S224849

El-Serag, H. B. (2020). Epidemiology of Hepatocellular Carcinoma. In The Liver (pp. 758–772). Wiley. https://doi.org/10.1002/9781119436812.ch59

Foglia, B., & Parola, M. (2020). Of FACT complex and oxidative stress response: a KEAP1/NRF2-dependent novel mechanism sustaining hepatocellular carcinoma progression. Gut, 69(2), 195–196. https://doi.org/10.1136/gutjnl-2019-319609

Gatto, F., Schulze, A., & Nielsen, J. (2016). Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics. Cell Reports, 16(3), 878–895. https://doi.org/10.1016/j.celrep.2016.06.038

Gogleva, A., Polychronopoulos, D., Pfeifer, M., Poroshin, V., Ughetto, M., Martin, M. J., Thorpe, H., Bornot, A., Smith, P. D., Sidders, B., Dry, J. R., Ahdesmäki, M., McDermott, U., Papa, E., & Bulusu, K. C. (2022). Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nature Communications, 13(1), 1667. https://doi.org/10.1038/s41467-022-29292-7

Ha, M. J., Banerjee, S., Akbani, R., Liang, H., Mills, G. B., Do, K.-A., & Baladandayuthapani, V. (2018). Personalized Integrated Network Modeling of the Cancer Proteome Atlas. Scientific Reports, 8(1), 14924. https://doi.org/10.1038/s41598-018-32682-x

Ibrahim, L., Mesgarzadeh, J., Xu, I., Powers, E. T., Wiseman, R. L., & Bollong, M. J. (2020). Defining the Functional Targets of Cap‘n’collar Transcription Factors NRF1, NRF2, and NRF3. Antioxidants, 9(10), 1025. https://doi.org/10.3390/antiox9101025

Ikram, N., Mirza, M. U., Vanmeert, M., Froeyen, M., Salo-Ahen, O. M. H., Tahir, M., Qazi, A., & Ahmad, S. (2019). Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds. Biomolecules, 9(4), 124. https://doi.org/10.3390/biom9040124

Jin, X., Zheng, Y., Chen, Z., Wang, F., Bi, G., Li, M., Liang, J., Sui, Q., Bian, Y., Hu, Z., Qiao, Y., & Xu, S. (2021). Integrated analysis of patients with KEAP1/NFE2L2/CUL3 mutations in lung adenocarcinomas. Cancer Medicine, 10(23), 8673–8692. https://doi.org/10.1002/cam4.4338

Konyn, P., Ahmed, A., & Kim, D. (2021). Current epidemiology in hepatocellular carcinoma. Expert Review of Gastroenterology & Hepatology, 15(11), 1295–1307. https://doi.org/10.1080/17474124.2021.1991792

Kudo, M., Finn, R. S., Qin, S., Han, K.-H., Ikeda, K., Piscaglia, F., Baron, A., Park, J.-W., Han, G., Jassem, J., Blanc, J. F., Vogel, A., Komov, D., Evans, T. R. J., Lopez, C., Dutcus, C., Guo, M., Saito, K., Kraljevic, S., … Cheng, A.-L. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet, 391(10126), 1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1

Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 73(17), 3221–3247. https://doi.org/10.1007/s00018-016-2223-0

Long, J. E., Jankovic, M., & Maddalo, D. (2021). Drug Discovery Oncology in a Mouse: concepts, Models and Limitations. Future Science OA, 7(8). https://doi.org/10.2144/fsoa-2021-0019

Martorana, A., La Monica, G., & Lauria, A. (2020). Quinoline-Based Molecules Targeting c-Met, EGF, and VEGF Receptors and the Proteins Involved in Related Carcinogenic Pathways. Molecules, 25(18), 4279. https://doi.org/10.3390/molecules25184279

Mech, D., Kurowska, A., & Trotsko, N. (2021). The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. International Journal of Molecular Sciences, 22(21), 11533. https://doi.org/10.3390/ijms222111533

Moscow, J. A., Fojo, T., & Schilsky, R. L. (2018). The evidence framework for precision cancer medicine. Nature Reviews Clinical Oncology, 15(3), 183–192. https://doi.org/10.1038/nrclinonc.2017.186

Newby, D., Freitas, A. A., & Ghafourian, T. (2015). Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. European Journal of Medicinal Chemistry, 90, 751–765. https://doi.org/10.1016/j.ejmech.2014.12.006

Niu, L., Liu, L., Yang, S., Ren, J., Lai, P. B. S., & Chen, G. G. (2017). New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1868(2), 564–570. https://doi.org/10.1016/j.bbcan.2017.10.002

Oner, E., Al-Khafaji, K., Mezher, M. H., Demirhan, I., Suhail Wadi, J., Belge Kurutas, E., Yalin, S., & Choowongkomon, K. (2023). Investigation of berberine and its derivatives in Sars Cov-2 main protease structure by molecular docking, PROTOX-II and ADMET methods: in machine learning and in silico study. Journal of Biomolecular Structure and Dynamics, 41(19), 9366–9381. https://doi.org/10.1080/07391102.2022.2142848

Orrù, C., Giordano, S., & Columbano, A. (2020). Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers, 12(10), 2932. https://doi.org/10.3390/cancers12102932

Parisi, D., Adasme, M. F., Sveshnikova, A., Bolz, S. N., Moreau, Y., & Schroeder, M. (2020). Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Computational and Structural Biotechnology Journal, 18, 1043–1055. https://doi.org/10.1016/j.csbj.2020.04.004

Radchenko, E. V., Dyabina, A. S., & Palyulin, V. A. (2020). Towards Deep Neural Network Models for the Prediction of the Blood–Brain Barrier Permeability for Diverse Organic Compounds. Molecules, 25(24), 5901. https://doi.org/10.3390/molecules25245901

Raghunath, A., Sundarraj, K., Arfuso, F., Sethi, G., & Perumal, E. (2018). Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers, 10(12), 481. https://doi.org/10.3390/cancers10120481

Ramezani, A., Nahad, M. P., & Faghihloo, E. (2018). The role of Nrf2 transcription factor in viral infection. Journal of Cellular Biochemistry, 119(8), 6366–6382. https://doi.org/10.1002/jcb.26897

Ren, X., Li, Y., Zhou, Y., Hu, W., Yang, C., Jing, Q., Zhou, C., Wang, X., Hu, J., Wang, L., Yang, J., Wang, H., Xu, H., Li, H., Tong, X., Wang, Y., & Du, J. (2021). Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biology, 46, 102122. https://doi.org/10.1016/j.redox.2021.102122

Sajadimajd, S., & Khazaei, M. (2018). Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18(6), 538–557. https://doi.org/10.2174/1568009617666171002144228

Santos, A., Colaço, A. R., Nielsen, A. B., Niu, L., Strauss, M., Geyer, P. E., Coscia, F., Albrechtsen, N. J. W., Mundt, F., Jensen, L. J., & Mann, M. (2022). A knowledge graph to interpret clinical proteomics data. Nature Biotechnology, 40(5), 692–702. https://doi.org/10.1038/s41587-021-01145-6

Slocum, S. L., Skoko, J. J., Wakabayashi, N., Aja, S., Yamamoto, M., Kensler, T. W., & Chartoumpekis, D. V. (2016). Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Archives of Biochemistry and Biophysics, 591, 57–65. https://doi.org/10.1016/j.abb.2015.11.040

Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., & Tang, D. (2016). Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 63(1), 173–184. https://doi.org/10.1002/hep.28251

Tamir, T. Y., Mulvaney, K. M., & Major, M. Ben. (2016). Dissecting the Keap1/Nrf2 pathway through proteomics. Current Opinion in Toxicology, 1, 118–124. https://doi.org/10.1016/j.cotox.2016.10.007

Tang, W., Chen, Z., Zhang, W., Cheng, Y., Zhang, B., Wu, F., Wang, Q., Wang, S., Rong, D., Reiter, F. P., De Toni, E. N., & Wang, X. (2020). The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduction and Targeted Therapy, 5(1), 87. https://doi.org/10.1038/s41392-020-0187-x

Tinworth, C. P., & Young, R. J. (2020). Facts, Patterns, and Principles in Drug Discovery: Appraising the Rule of 5 with Measured Physicochemical Data. Journal of Medicinal Chemistry, 63(18), 10091–10108. https://doi.org/10.1021/acs.jmedchem.9b01596

Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575(7782), 299–309. https://doi.org/10.1038/s41586-019-1730-1

Wu, M., Tang, Y., Liu, J., Liang, R., & Luo, X. (2020). Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells. Journal of Cancer, 11(10), 2993–3001. https://doi.org/10.7150/jca.39854

Yamamoto, M., Kensler, T. W., & Motohashi, H. (2018). The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews, 98(3), 1169–1203. https://doi.org/10.1152/physrev.00023.2017

Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1), 113. https://doi.org/10.1038/s41392-020-00213-8

Zheng, A., Chevalier, N., Calderoni, M., Dubuis, G., Dormond, O., Ziros, P. G., Sykiotis, G. P., & Widmann, C. (2019). CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget, 10(66), 7058–7070. https://doi.org/10.18632/oncotarget.27361

Zhong, M., Lynch, A., Muellers, S. N., Jehle, S., Luo, L., Hall, D. R., Iwase, R., Carolan, J. P., Egbert, M., Wakefield, A., Streu, K., Harvey, C. M., Ortet, P. C., Kozakov, D., Vajda, S., Allen, K. N., & Whitty, A. (2020). Interaction Energetics and Druggability of the Protein–Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry, 59(4), 563–581. https://doi.org/10.1021/acs.biochem.9b00943

Zhu, Y., & Hu, X. (2022). Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Molecules, 27(20), 7124. https://doi.org/10.3390/molecules27207124


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
39
View
0
Share